Introduction to Artificial Intelligence

Lecture 18: Games and strategies

November 6, 2025

Lecture plan

- Games and strategies
 - Zero-sum game
 - None-zero-sum game: Nash equilibrium
 - Cooperative games

Recap: Two-player zero-sum games

• Players = {agent, opponent}

• Definition: two-player zero-sum game

- *S*_{start}: starting state
- Action(s): possible actions from state s
- Successor(s, a): resulting state if choose action a in state s
- IsEndState(s): whether s is an end state
- Utility(s): agent's utility for end state s
- Player(s) \in Players: player who controls state s

Two-finger Morra

- Players A and B each show 1 or 2 fingers
 - If both show 1, B gives A 2 dollars
 - If both show 2, B gives A 4 dollars
 - Otherwise, A gives B 3 dollars

Two-finger Morra

- What are the possible actions?
 - Player A chose 1, player B chose 1
 - Player A chose 1, player B chose 2
 - Player A chose 2, player B chose 1
 - Player A chose 2, player B chose 2

Payoff matrix

- Definition: single-move simultaneous game
 - Players = $\{A, B\}$
 - Actions: all possible actions
 - V(a,b): A's utility if A chooses action a, B choose b (Let V be the payoff matrix)

• Example: two-finger Morra payoff matrix

Player A	1 finger	2 fingers	Player B	1 finger	2 fingers
1 finger	2	- 3	1 finger	-2	3
2 fingers	- 3	4	2 fingers	3	-4

Strategies

- Definition:
 - Pure strategy: a pure strategy is a single action: $a \in Actions$
 - **Mixed strategy**: a mixed strategy is a probability distribution over all possible actions

$$0 \le \pi(a) \le 1$$
 for $a \in Actions$

- Example: two-finger Morra strategies
 - Always play action 1: $\pi = [1, 0]$
 - Always play action 2: $\pi = [0, 1]$
 - Uniformly chosen at random: $\pi = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$

Game evaluation

- Definition: game evaluation
 - The value of the game if player A follows π_A and player B follows π_B is

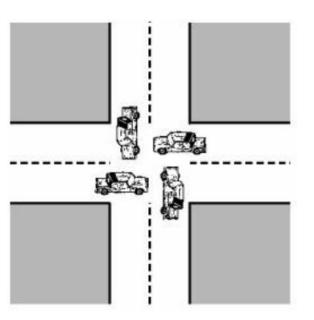
$$V(\pi_A, \pi_B) = \sum_{a,b} \pi_A(a) \pi_B(b) V(a,b)$$

How to optimize the game value?

• Game value:

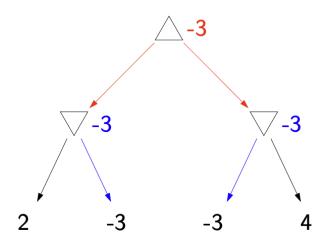
$$V(\pi_A, \pi_B)$$

• Challenge: player A wants to maximize, whereas player B wants to minimize

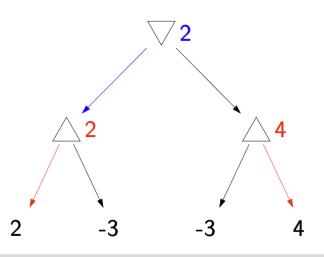


Pure strategies: Who goes first?

• Player A goes first:



• Player *B* goes first:



Going second is no worse!

$$\max_{a} \min_{b} V(a, b) \le \min_{b} \max_{a} V(a, b)$$

Proof: For any fixed *a*, *b*

$$\min_{b'} V(a,b') \le V(a,b) \le \max_{a'} V(a',b)$$

Now we may take max on the left inequality, and min on the right inequality, to conclude the minimax inequality

Mixed strategies

- Player A reveals: $\pi_A = \begin{bmatrix} \frac{1}{2}, & \frac{1}{2} \end{bmatrix}$
- Value $V(\pi_A, \pi_B) = \pi_B(1) \times \left(-\frac{1}{2}\right) + \pi_B(2) \times \left(\frac{1}{2}\right)$
- Optimal strategy for player B is $\pi_B = [1, 0]$, it's a pure strategy!
- Claim: For any fixed mixed strategy π_A :

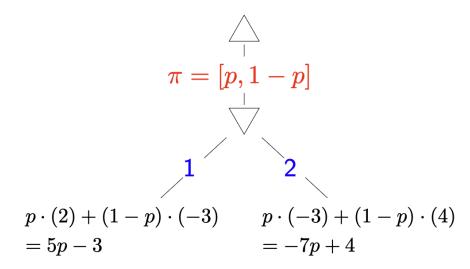
$$\min_{\pi_B} V(\pi_A, \pi_B)$$

can be attained by a pure strategy π_B

Can you convince yourself that this statement is correct?

Mixed strategies

• Player A first reveals his or her mixed strategy

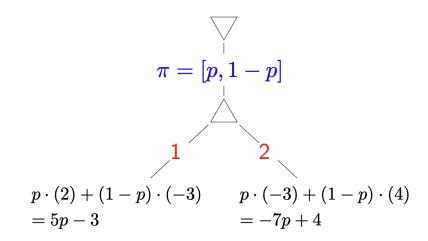


• Player *B* chooses the minimum of the two, leading to the maximin value of game:

$$\max_{0 \le p \le 1} \min\{5p - 3, -7p + 4\} = -\frac{1}{12} \text{ (with } p = \frac{7}{12}\text{)}$$

Mixed strategies

• Player B first reveals his or her mixed strategy



• Player A chooses the maximum of the two, leading to the minimax value of game:

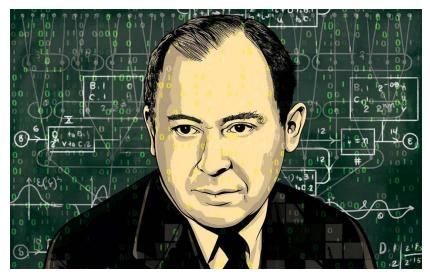
$$\min_{p \in [0,1]} \max\{5p-3, -7p+4\} = -\frac{1}{12} \text{ (again with } p = \frac{7}{12})$$

Minimax theorem

- Theorem: the minimax theorem [John von Neumann, 1928]
 - For every simultaneous two-player zero-sum game with a finite number of actions

$$\max_{\pi_A \in \Delta_m} \min_{\pi_B \in \Delta_n} V(\pi_A, \pi_B) = \min_{\pi_B \in \Delta_n} \max_{\pi_A \in \Delta_m} V(\pi_A, \pi_B),$$

where π_A , π_B range over mixed strategies over a finite set



• Let M be the payoff matrix for player A. Suppose A and B use mixed strategies $x \in \Delta_m$ and $y \in \Delta_n$, where Δ_m and Δ_n refer to the simplex on the unit sphere in the positive orthant

• The expected payoff for player A is $f(x,y) = x^{\mathsf{T}} M y$

• First, fix x. Because x^TM is linear, its minimum is attained at a vertex, i.e., at some pure column e_j . Thus

$$\min_{y \in \Delta_n} f(x, y) = \min_{1 \le j \le n} x^{\mathsf{T}} M e_j$$

- Define $F(x) = \min_{1 \le j \le n} x^{\top} M e_j$. F is the pointwise minimum of linear functions. One can verify that
 - F(x) is concave
 - F(x) is continuous in the simplex Δ_m
- Therefore, there exists some $x^* \in \Delta_m$ that maximizes F(x). Let

$$v \coloneqq F(x^*) = \min_{1 \le j \le n} x^{*\mathsf{T}} M e_j$$

• Consider the set of "tight" columns $J = \{j: x^{*T}Me_j = v\}$. Take any probability vector y^* supported on J. Then $x^{*T}My^* = v$

because every column in the support gives payoff v to x^*

• For every $y \in \Delta_m$, $F(x^*) \le f(x^*, y)$. With $y = y^*$, we get $f(x^*, y^*) = v$. Hence

$$\max_{x \in \Delta_m} \min_{y \in \Delta_n} f(x, y) \ge \min_{y \in \Delta_n} f(x^*, y) = v = f(x^*, y^*)$$

• Next, we have that

$$\min_{y \in \Delta_n} \max_{x \in \Delta_m} f(x, y) \le \max_{x \in \Delta_m} f(x, y^*) \le v = \max_{x \in \Delta_m} F(x)$$

The second part is because on every $j \in J$, $f(x^*, e_j) = v$

• Since $\max_{x \in \Delta_m} \min_{y \in \Delta_n} f(x, y) \ge v$, we have $\max_{x \in \Delta_m} \min_{y \in \Delta_n} x^\top M y \ge \min_{y \in \Delta_n} \max_{x \in \Delta_m} x^\top M y$

• Finally, recall the minimax inequality, which asserts that $\max_{\pi_A} \min_{\pi_B} V(\pi_A, \pi_B) \leq \min_{\pi_B} \max_{\pi_A} V(\pi_A, \pi_B)$

Combined together, we thus complete the proof

Lecture plan

- Games and strategies
 - Zero-sum game
 - None-zero-sum game: Nash equilibrium
 - Cooperative games

- Prosecutor asks A and B individually if each will testify against the other
 - If both testify, then both are sentenced to 5 years in jail
 - If both refuse, then both are sentenced to 1 year in jail
 - If only on testifies, then he or she gets out for free; the other gets a 10 year sentence

- What are the possible outcome?
 - Player A testified, player B testified
 - Player A testified, player B refused
 - Player A refused, player B testified
 - Player A refused, player B refused

• Payoff matrix

	testify	refuse	
testify	A = -5, B = -5	A = -10, B = 0	
refuse	A = 0, B = -10	A = -1, B = -1	

• Let $V_p(\pi_A, \pi_B)$ be the utility for player p

- If both players had refused, then one of the players could testify to improve his/her payoff (from -1 to 0)
- If one player testified, then the other had to choose testified, otherwise he/she would be in the jail for 10 years instead of 5 years
- This is not the highest possible reward, but it is stable in the sense that neither player would want to change his or her strategy

• This kind of situation is commonly known as the **Nash equilibrium**

Nash equilibrium

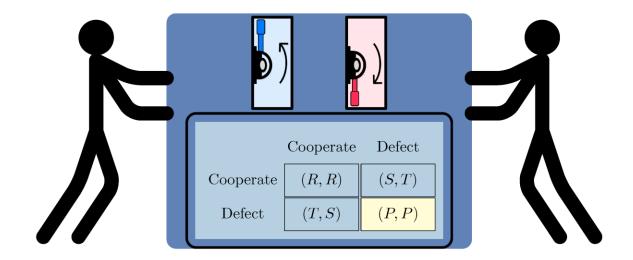
- Different from zero-sum games, a Nash equilibrium is a kind of fixedpoint state, where no player has any incentive to change his or her policy unilaterally
- **Definition:** A Nash equilibrium is any kind of policies (π_A^*, π_B^*) such that no player has an incentive to change his or her strategy, conditioned on the other player's strategy

$$V_A(\pi_A^*, \pi_B^*) \ge V_A(\pi_A, \pi_B^*)$$
 for all π_A

$$V_B(\pi_A^*, \pi_B^*) \ge V_B(\pi_A^*, \pi_B)$$
 for all π_B

Nash equilibrium

- Since the game is no longer a zero-sum game, we cannot apply the minimax theorem, but we can still get a weaker result
- **Theorem:** Nash's existence theorem [1950]
 - In any finite-player game with finite number of actions, there exits at least one (mixed-strategy) Nash equilibrium



• Proof uses Kakutani's fixed-point theorem (skipped)

Examples of Nash equilibria

- The minimax strategies for zero-sum are also equilibria and they are simultaneously the global optima (exercise question)
- Example 1: Two-finger Morra
 - Nash equilibrium: A and B both play $\pi=\left[\frac{7}{12},\frac{5}{12}\right]$ $\min_{p\in[0,1]}\max\{5p-3,-7p+4\}=-\frac{1}{12} \text{ (again with } p=\frac{7}{12})$
- Example 2: Collaborative two-finger Morra
 - Two Nash equilibria:
 - A and B both play 1 (value is 2)
 - A and B both play 2 (value is 4)

Summary

• Two-player zero-sum games

- Von Neumann's minimax theorem
- Multiple minimax strategies, single game value

• Two-player non-zero-sum games

- Nash's existence theorem or fixed-point theorem
- Multiple Nash equilibria, multiple game values

Other examples: AlphaGo

- Supervised learning: on human games
- Reinforcement learning: on self-play games
- Evaluation function: convolutional neural network (value network)
- Policy: convolutional neural network (policy network)
- Monte Carlo Tree Search: search/lookahead

Coordination games

• Hanabi: players need to signal to each other and coordinate in a decentralized fashion to collaboratively win. So, unlike most games, you cannot see your own hand — only your teammates can. You must rely on limited communication to figure out which cards to play

• Hide-and-Seek: OpenAI has developed multi-agent RL in which two teams of agents (hiders vs seekers) compete in a simulated physics-based world

Cooperative games

- A cooperative game is typically defined as a pair (N, v), where
 - $N = \{1, 2, ..., n\}$ is the set of players
 - $v: 2^N \to \mathbb{R}$ is the characteristic function, which assigns a value to every coalition
- Applications:
 - **Resource allocation**: given a budget (e.g., one million dollars) and a list of public projects, allocate the budget on a subset of projects to maximize social welfare
 - Robotics: multi-agent cooperation

Solution concepts in cooperative games

- Core: A payoff vector $x = (x_1, x_2, ..., x_n)$ is in the core if $\sum_{i \in N} x_i = v(N)$, and $\sum_{i \in S} x_i \ge v(S)$, $\forall S \subseteq N$
 - Example: in resource allocation games, this corresponds to solving a linear program
- Shapley value: ensures fair division https://en.wikipedia.org/wiki/Shapley value

