Introduction to Artificial Intelligence: Principles and Techniques

Lecture 21: Bayesian networks---Coping with uncertainty

November 17, 2025

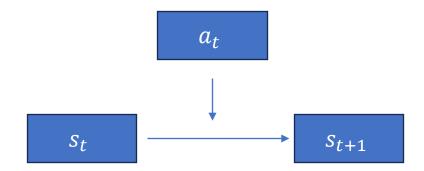
Lecture Plan

- Bayesian networks
 - Overview and definitions
 - Probabilistic inference
 - Learning Bayesian networks from data

What is a Bayesian network?

• Bayesian network: a directed probabilistic network that represents a joint distribution using a directed acyclic graph and conditional probability distributions

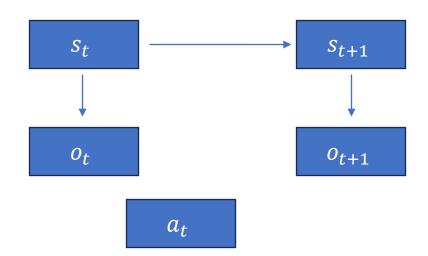
• Example (Markov decision process)



• Markov transition model: $Pr(s_{t+1}|s_t, a_t)$

Partially-observed MDP (POMDP)

- A partially-observed MDP has
 - Hidden state S_t
 - Action a_t
 - Observation o_t



• Belief update

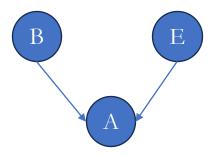
$$b_{t+1}(s') = \eta \Pr(o_{t+1}|s') \sum_{s} \Pr(s'|, b_t) \cdot b_t(s)$$

A toy example for factor analysis

- Problem: earthquakes, burglaries, and alarms
 - Earthquakes and burglaries are independent events (happening with probability ϵ)
 - Either event will cause the alarm to go off
- Suppose you get an alarm
 - Does hearing that there is an **earthquake** increase, decrease, or keep the probability of a **burglary**?
- Joint distribution: Pr(E, B, A)
- Questions:
 - Pr(B = 1 | A = 1)?
 - Pr(B = 1 | A = 1, E = 1)?

Apply Bayesian networks to analyze alarms

- Dependency diagram and table of all possible outcomes
 - Either B = 1 or E = 1 triggers A = 1



• Joint distribution:

$$Pr(B = b, E = e, A = a)$$

= $Pr(B = b) Pr(E = e) Pr(A = a|B = b, E = e)$

```
b \quad e \quad a \quad p(a \mid b, e)
0 \ 0 \ 0 \ 1
0 1 0 0
1 0 0 0
1 1 0 0
```


Calculating the probabilities

- We can calculate the joint probabilities
- Recall that each event happens w. p. ϵ

- b e a $\mathbb{P}(B=b, E=e, A=a)$
- $0 \quad 0 \quad (1-\epsilon)^2$
- 0 0 1 0
- $0 \quad 1 \quad 0 \quad 0$
- $0 \quad 1 \quad 1 \quad (1-\epsilon)\epsilon$
- 1 0 0 (
- 1 0 1 $\epsilon(1-\epsilon)$
- 1 1 0 0
- 1 1 1 ϵ^2

- Therefore
 - $Pr(B = 1) = \epsilon(1 \epsilon) + \epsilon^2 = \epsilon$
 - Pr($B = 1 \mid A = 1$) = $\frac{\epsilon(1-\epsilon)+\epsilon^2}{\epsilon(1-\epsilon)+\epsilon^2+(1-\epsilon)\epsilon} = \frac{1}{2-\epsilon}$
 - $\Pr(B = 1 \mid A = 1, E = 1) = \frac{\epsilon^2}{\epsilon^2 + (1 \epsilon)\epsilon} = \epsilon$

Formal definition of Bayesian networks

- Definition: Bayesian network
 - Let $X = (X_1, ..., X_n)$ be random variables
 - A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over *X* as a product of local conditional distributions, one for each node:

$$\Pr(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^{n} p(X_i = x_i \mid X_{parents(i)} = x_{parents(i)})$$

Applications of Bayesian networks

- Natural language processing:
 - Part-of-speech tagging: assigning each word in a sentence its syntactic category
 - Parsing: figuring out the syntactic tree structure of a sentence
 - **Topic modeling**: an unsupervised text mining task that takes a corpus of documents and discovers abstract topics within that corpus (latent Dirichlet allocation)
 - **Grammatical error correction**: encode grammatical rules to correct the grammar within text
- Robotics
 - Decision-making under uncertainty
 - Markov decision processes

Review: probability

- Random variables: sunshine $S \in \{0,1\}$, rain $R \in \{0,1\}$
- Joint distribution (look at historical records)

$$\mathbb{P}(S,R) = \begin{vmatrix} s & r & \mathbb{P}(S=s,R=r) \\ 0 & 0 & 0.20 \\ 0 & 1 & 0.08 \\ 1 & 0 & 0.70 \\ 1 & 1 & 0.02 \end{vmatrix}$$

• Marginal distribution (sum over all possible R)

$$\mathbb{P}(S) = \begin{vmatrix} s & \mathbb{P}(S=s) \\ 0 & 0.28 \\ 1 & 0.72 \end{vmatrix}$$

Review: probability

• Conditional probability (normalize by Pr(R))

$$\mathbb{P}(S \mid R = 1) = \begin{vmatrix} s & \mathbb{P}(S = s \mid R = 1) \\ 0 & 0.8 \\ 1 & 0.2 \end{vmatrix}$$

- Additional variables: traffic T
 - Joint distribution: Pr(S, R, T)
 - Marginal distribution Pr(T)
 - Conditional distribution: Pr(R|T=1,S=0) and Pr(R|T=0,S=0)

Lecture plan

- Bayesian networks
 - Overview and definitions
 - Probabilistic inference
 - Learning Bayesian networks from data

Problem setup

- Input:
 - Bayesian network: $P(X_1, ..., X_n)$
 - Evidence: E = e where $E \subseteq X$ is subset of variables
 - Query: $Q \subseteq X$ is subset of variables
- Output:
 - $Pr(Q \mid E = e)$ or $Pr(Q = q \mid E = e)$ for all values q

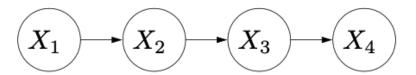
Probabilistic programs

- There is another way of writing down Bayesian networks as a **probabilistic program**, which is a probabilistic program
 - Executing this program will assign values to a collection of random variables X_1, \dots, X_n
- Example (probabilistic program for alarm)
 - $B \sim \text{Bernoulli}(\epsilon)$
 - $E \sim \text{Bernoulli}(\epsilon)$
 - $A = B \vee E$

Example: sentence modeling

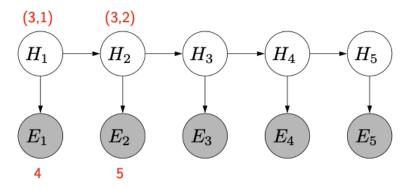
• Score sentences for spam detection, speech recognition, or machine translation

- Underlying probabilistic program: a Markov model for generating a sentence
 - For each position i = 1, 2, ..., n:
 - Measure next-word generation probability $X_i \sim p(X_i \mid X_{i-1})$



Example: object trajectory tracking

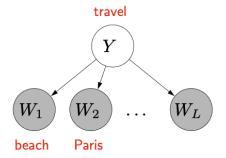
- Dependency diagram: hidden Markov model (HMM)
 - For each time step t = 1, ..., T:
 - Generate object location $H_t \sim p(H_t \mid H_{t-1})$
 - Generate sensor reading $E_t \sim p(E_t \mid H_t)$
 - After object location



• Speech recognition: H_t would be the words and E_t would be the raw acoustic signal or wave

Example: sentiment recognition

- Probabilistic program: naïve Bayes model
 - Generate label $Y \sim p(Y)$
 - For each position i = 1, ..., L:
 - Conditional word generation probability $W_i \sim p(W_i \mid Y)$



- Inference: given a sentence, what sentiment is it?
 - One advantage of using naïve Bayes for classification is that training is extremely easy and fast and just requires counting as opposed to training a neural network

Summary of probabilistic programming

- Probabilistic programs specify a Bayesian network
 - Many different types of models
 - Common paradigm: define how the various random variables of interest (output) generate the observations (input)
 - This type of modeling is different from how we usually do supervised learning

Overall idea: Gibbs sampling

- Recall: given a Bayesian network, want output $\Pr(X \mid E = e)$ or $\Pr(X = q \mid E = e)$ for all values q
- The exact inference is often expensive
- Gibbs sampling gives an approximate way to estimate these conditional probabilities by generating many samples from the posterior distribution
- The key idea is to treat all non-evidence variables as unknowns that we repeatedly resample
 - Markov blanket: given a node, the parent nodes and the children of this node

Gibbs sampling

- Step 1: initialization
 - For each non-evidence variable Z, assign Z a random value from its domain
- Step 2: iterative sampling
 - For each Gibbs iteration:
 - Loop over variables in Z (the non-evidence variables)
 - Resample each variable from its conditional distribution given its Markov blanket
- Formally, for each non-evidence variable X_i :

$$Pr(X_i \mid MB(X_i)) \propto Pr(X_i \mid Parents(X_i)) \prod_{Y \in Children(X_i)} Pr(Y \mid Parents(Y))$$

Example: Wet grass

- Graph:
 - Rain → Wet Grass ← Sprinkler
- Evidence variables:
 - Evidence: W
 - W = true
- Non-evidence variables:
 - Non-evidence: *R*, *S*
- Goal:
 - Compute $Pr(R = T \mid W = T)$

Example: Wet grass

• Rain:

•
$$Pr(R = true) = 0.2, Pr(R = false) = 0.8$$

• Sprinkler | Rain

R	$P(S = true \mid R)$	$P(S = false \mid R)$		
True	0.01	0.99		
False	0.40	0.60		

• Wet grass | Rain, Sprinkler

R	S	$P(W = true \mid R, S)$	$P(W = false \mid R, S)$
True	True	0.99	0.01
True	False	0.80	0.20
False	True	0.90	0.10
False	False	0.00	1.00

Exact inference

• First compute the joint probability

$$P(R = T, W = T) = \sum_{S} P(R = T, S = S, W = T)$$

For s = T: $Pr(R = T, S = T, W = T) = 0.2 \cdot 0.01 \cdot 0.99 = 0.00198$

For
$$s = F$$
:
 $Pr(R = T, S = F, W = T) = 0.2 \cdot 0.99 \cdot 0.80 = 0.1584$

So Pr(R = T, W = T) = 0.00198 + 0.1584 = 0.16038

Exact inference

• Now compute

$$P(W = T) = \sum_{r} \sum_{s} P(r, s, W = T)$$

We already have the two terms with R = T. For R = F: $Pr(R = F, S = T, W = T) = 0.8 \cdot 0.4 \cdot 0.9 = 0.288$ $Pr(R = F, S = F, W = T) = 0.8 \cdot 0.6 \cdot 0.0 = 0$

So

$$Pr(W = T) = 0.16038 + 0.288 = 0.44838$$

• Finally,

$$Pr(R = T \mid W = T) = \frac{Pr(R = T, W = T)}{Pr(W = T)} = \frac{0.16038}{0.44838} \approx 0.3577$$

- Each iteration alternates between:
 - Resample R from $Pr(R \mid S, W)$
 - Resample S from $Pr(S \mid R, W)$
- Record the value of R, S each iteration
- Iteration 1
 - Resample *R*

• Case
$$R = T$$

 $Pr(R = T, S = T, W = T) = 0.2 \cdot 0.01 \cdot 0.99 = 0.00198$

• Case
$$R = F$$

 $Pr(R = F, S = T, W = T) = 0.8 \cdot 0.4 \cdot 0.9 = 0.288$

• Normalize:

$$P(R = T \mid S, W) = \frac{0.00198}{0.00198 + 0.288} \approx 0.0068$$
$$P(R = F \mid S, W) \approx 0.9932$$

- Iteration 1
 - Resample S
 - Unnormalized:
 - $S = T: 0.4 \cdot 0.9 = 0.36$
 - $S = F: 0.6 \cdot 0.0 = 0$
 - Normalize:

$$Pr(S = T) = 1, Pr(S = F) = 0$$

- Iterations 2-5
 - The same conditional distribution repeats:

$$P(R = F \mid S, W) \approx 0.9932, P(S = T) = 1$$

• Thus, for iterations 1-5:

$$R = [F, F, F, F, F]$$

• Posterior estimate:

$$\hat{P}(R = T \mid W = T) = \frac{0}{5} = 0$$

This is biased because the starting point S = T strongly explains W = T

- Restart with better initialization
 - New initial state:

$$R = T$$
, $S = F$, $W = T$

Run 10 iterations (exact computation omitted---due to previous slides)

Iter	1	2	3	4	5	6	7	8	9	10
R	T	Τ	F	F	F	T	F	F	T	F
S	F	F	Т	Т	Т	F	Т	Т	F	Т

Recorded R values:

Counts:

- R = T:4
- R = F:6

$$\hat{P}(R = T \mid W = T) = \frac{4}{10} = 0.4$$

- Final result:
 - Gibbs sampling gives:

$$Pr(R = T \mid W = T) \approx 0.40 \ (empirical)$$

• Exact value:

0.3577

• This example shows that Gibbs sampling can approximate the posterior using only local Markov blanket computations

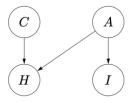
Lecture Plan

- Bayesian networks
 - Overview and definitions
 - Probabilistic inference
 - Learning Bayesian networks from data

Estimate Bayesian network parameters

- Inference assumes that the local conditional distributions are known. But where do all the local conditional distributions come from?
 - These local conditional distributions are specified in the Bayesian network

• Wet grass example



```
c p(c)
1 ?
0 ?
```

```
a p(a)
1 ?
0 ?
```

```
c a h p(h | c, a)
0 0 0 ?
0 0 1 ?
0 1 0 ?
0 1 1 ?
1 0 0 ?
1 1 1 ?
1 1 0 ?
```

```
a i p(i | a)
0 0 ?
0 1 ?
1 0 ?
1 1 ?
```


Estimate from data

- As with any learning algorithm, we start with the data
- We will focus on the fully-supervised setting, where each data point is a complete assignment to all the variables in the Bayesian network
- Training data: D_{train} (an example is an assignment to X)
- Parameters: θ (local conditional probabilities)
- Output: estimate $\hat{\theta}$

Example: one variable

- Setup:
 - One variable R representing the rating of a movie $\{1,2,3,4,5\}$ $\Pr(R=r)=p(r)$

• Parameters:

$$\theta = (p(1), p(2), p(3), p(4), p(5))$$

• Training data:

$$D_{train} = \{1,3,4,4,4,4,5,5,5,5\}$$

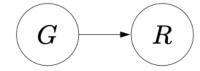
Example: one variable

• Intuition: $p(r) \propto$ number of occurrences of r in $D_{train} = \{1,3,4,4,4,4,5,5,5\}$

	r	count(r)	p(r)
	1	1	0.1
θ :	2	0	0.0
0.	3	1	0.1
	4	5	0.5
	5	3	0.3

Example: two variables

- Variables:
 - Genre $G \in \{drama, comedy\}$
 - Rating $R \in \{1,2,3,4,5\}$



$$Pr(G = g, R = r) = p_G(g)p_R(r \mid g)$$

- $D_{train} = \{(d, 4), (d, 4), (d, 5), (c, 1), (c, 5)\}$
- Parameters: $\theta = (p_G, p_R)$

Example: two variables

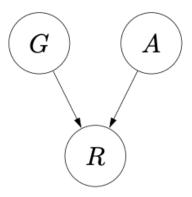
• Estimate each local conditional distribution (p_G and p_R) separately

 $g : egin{array}{ccccc} g & \operatorname{\mathsf{count}}_G(g) & p_G(g) \\ \mathsf{d} & 3 & 3/5 \\ \mathsf{c} & 2 & 2/5 \end{array}$

g	r	$count_R(g,r)$	$p_R(r \mid g)$
d	4	2	2/3
d	5	1	1/3
С	1	1	1/2
С	5	1	1/2

Example: two-level dependency diagram

- Variables:
 - $G \in \{drama, comedy\}$ (genre)
 - $A \in \{0,1\}$ (award)
 - $R \in \{1,2,3,4,5\}$ (rating)



$$Pr(G = g, A = a, R = r) = p_G(g) \cdot p_A(a) \cdot p_R(r \mid g, a)$$

Example: two-level dependency diagram

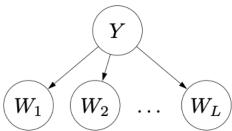
$$D_{train} = \{(d, 0, 3), (d, 1, 5), (d, 0, 1), (c, 0, 5), (c, 1, 4)\}$$

• Parameters: $\theta = (p_G, p_A, p_R)$

g	a	r	$count_R(g,a,r)$	$p_R(r\mid g,a)$
d	0	1	1	1/2
d	0	3	1	1/2
d	1	5	1	1
С	0	5	1	1
С	1	4	1	1

Parameter sharing in Naïve Bayes

- In some cases, the local conditional distributions of different variables can share the same parameters
- Variables:
 - Genre $Y \in \{comedy, drama\}$
 - Movie review (sequence of words): $W_1, ..., W_L$
 - Parameters: $\theta = (p_{genre}, p_{word})$

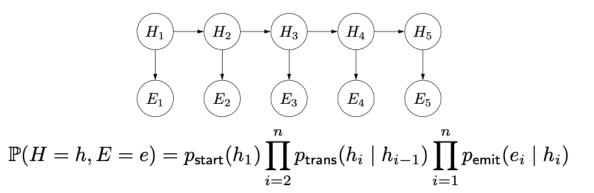


$$\mathbb{P}(Y=y,W_1=w_1,\ldots,W_L=w_L)=p_{\mathsf{genre}}(y)\prod_{j=1}^L p_{\mathsf{word}}(w_j\mid y)$$

• Impact: more reliable estimates, less expressive model

Parameter sharing in hidden Markov models

- Variables:
 - H_1 , ..., H_n (e.g., actual positions)
 - E_1 , ..., E_n (e.g., sensor readings)



- Parameters: $\theta = (p_{start}, p_{trans}, p_{emit})$
- D_{train} is a set of full assignments to (H, E)
- The HMM has K^2 transition parameters and KD emission parameters
 - These parameters are shared in the HMM
 - ullet As a result, the number of parameters does not scale with length n

General case

- Bayesian network: variables $X_1, ..., X_n$
- Parameters: collection of distributions $\theta = \{p_d : d \in D\}$ (e.g., $D = \{start, trans, emit\}$)

• Each variable X_i is generated from distribution p_{d_i} :

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n p_{d_i}(x_i \mid x_{parents(i)})$$

• Parameter sharing: d_i could be same for multiple i

Expectation maximization (EM)

- **EM**: generalization of the K-means algorithm. Cluster centroids = parameters θ ; Cluster assignments = hidden variables H
- Variables: H is hidden, E = e is observed

EM algorithm

- Initialize θ randomly
- Repeat until convergence
 - E-step:
 - Compute $q(h) = P(H = h \mid E = e; \theta)$ for each h (probabilistic inference)
 - Create fully-observed weighted examples: (h, e) with weight q(h)
 - M-step:
 - Maximum likelihood (count and normalize) on weighted examples to get θ (the marginal and conditional probabilities)

