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Recap

• Rational agents: A central concept to our approach to AI

https://www.houseflyai.com/ 



Rational agents

• https://github.com/SWE-agent/SWE-agent: automatically fix GitHub 
issues using your LM of  choice

• https://swe-agent.com/latest/installation/codespaces/ 



Agents and environments

• Agents interact with environments through sensors and actuators



Rationality

• Four necessary parts:

• Performance measure: defining the criterion of  success

• Prior knowledge of  the environment

• Actions that the agent can perform

• Agent’s percept sequence to date

• Rational agent: For each possible percept sequence, a rational agent 
selects an action that maximizes its performance measure in expectation, 
given percept sequence and prior knowledge



Properties of  task environments

• Fully observation vs. partially observable: esp. relevant when we 
study Reinforcement Learning and sequential decision-making

• Single-agent vs. multi-agent: cooperative vs. competitive?

• Episodic vs. sequential: the next episode does not depend on the 
actions taken in previous episodes (assembly lines); otherwise, current 
decision could affect future decisions (chess, taxi deriving)

• Static vs. dynamic: Crossword puzzles are static, while taxi driving is 
clearly dynamic



The structure of  agents

• Model-based agents use a transition model and a sensor model to keep 
track of  state of  the world

• Goal-based agents: Searching and planning



Utility-based agents

• For example, given a destination, many action sequences get us to 
achieve the goal, but some are quicker, safer, or cheaper (e.g., no toll).
• Economists and computer scientists use the term “utility” to refer to the 

“happiness” to achieve the goal

• Model-free agent: learn what action is best in a particular situation 
without learning exactly how that action changes the environment



Learning agents (finish recap)

• Four conceptual components

• Learning element: making improvements

• Performance element: selecting external actions

• Critic: gives feedback on how the agent is doing and determines how 
performance should be modified to do better

• Problem generator: suggesting actions that will lead to new and informative 
experiences



Machine learning overview

Supervised learning

Neural networks and deep 

learning

Natural language processing



Lecture plan

• Supervised learning

• Simple linear regression



Matrices and vectors

• Matrices: A rectangular array of  numbers

𝐴 =

𝑎1,1 … 𝑎1,𝑛

… … …
𝑎𝑚,1 … 𝑎𝑚,𝑛

• Vectors: An array consisting of  a single column

𝑎 =

𝑎1

…
𝑎𝑛



Simple linear regression

• Let us consider the simplest case of  a linear regression problem: We are 
giving a list of  one-dimensional features and their corresponding labels. 
We want to build a regression model to achieve that

• Examples: Predicting rental costs, advertising, marketing, etc

• Input: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) (assume we have already done the 
training/test split)

• Output: a linear model parameterized by 𝛽0 and 𝛽1



Examples of  𝛽0 and 𝛽1

• Fitting a regression model mapping TA ad spending to Sales amount

𝜷𝟏: Slope

𝜷𝟎: Intercept



Setting up the linear model

• Recall the input to the problem: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) (this is the 
training data)

• Let us set up a predicted label for each sample:

ො𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽1, for 𝑖 = 1, 2, … , 𝑛

• Next, let us set up the mean squared error metric:

෠𝐿 𝛽 =
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖  2 =
1

𝑛
෍

𝑖=1

𝑛

𝛽0 + 𝑥𝑖𝛽1 − 𝑦𝑖
2

Where 𝛽 =
𝛽0

𝛽1



Solving for 𝛽0 and 𝛽1

• Recall that ෠𝐿 𝛽 =
1

𝑛
σ𝑖=1

𝑛 𝛽0 + 𝑥𝑖𝛽1 − 𝑦𝑖
2; we would like to minimize 

the MSE metric

• We’re going to set the derivatives of  ෠𝐿 with respect to 𝛽0, 𝛽1 as zero

𝜕 ෠𝐿(𝛽)

𝜕𝛽0
=

2

𝑛
෍

𝑖=1

𝑛

𝛽0 + 𝑥𝑖𝛽1 − 𝑦𝑖 = 0

𝜕 ෠𝐿(𝛽)

𝜕𝛽1
=

2

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 𝛽0 + 𝑥𝑖𝛽1 − 𝑦𝑖 = 0



Solving for 𝛽0 and 𝛽1

• We can re-arrange the derivatives to be zero as follows

𝛽0 +
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 𝛽1 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖

1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 𝛽0 +
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖
2 𝛽1 =

1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖



Final solution

• This is a two-by-two linear system, which can be solved explicitly

𝛽0 =

1
𝑛

σ𝑖=1
𝑛 𝑥𝑖

2 −
1
𝑛

σ𝑖=1
𝑛 𝑥𝑖 ⋅

1
𝑛

σ𝑖=1
𝑛 𝑦𝑖

1
𝑛

σ𝑖=1
𝑛 𝑥𝑖

2 −
1
𝑛

σ𝑖=1
𝑛 𝑥𝑖

2

𝛽1 =
1 −

1
𝑛

σ𝑖=1
𝑛 𝑥𝑖 ⋅

1
𝑛

σ𝑖=1
𝑛 𝑦𝑖

1
𝑛

σ𝑖=1
𝑛 𝑥𝑖

2 −
1
𝑛

σ𝑖=1
𝑛 𝑥𝑖

2



Takeaways

• In order to have a valid solution, we need that

1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖
2 −

1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖

2

≠ 0

This is true as long as the 𝒙𝒊’s are not all the same!

• We can use the explicit expressions of  𝛽0, 𝛽1 to derive confidence 
intervals
• This is a bit advanced, but the high-level idea is we assume the 𝑥𝑖 ’s are Gaussian, 

from which we could derive the distribution of  𝛽0, 𝛽1



Summary of  simple linear regression

• After solving መ𝛽0, መ𝛽1, we could use the estimated coefficients to make 
predictions on unseen regions

ො𝑦 = መ𝛽1𝑥 + መ𝛽0



Evaluation metrics

• 𝑹𝟐 statistic measures the proportion of  variance explained

RSS (Residual sum of  squares) = σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)2

TSS (Total sum of  squares) = σ𝑖=1
𝑛 (𝑦𝑖 − ത𝑦)2, where ത𝑦 =

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆

𝑅2 always takes on a value between 0 and 1



Evaluation metrics

• Correlation between two random variables is another measure of  linear 
relationship between 𝑋 and 𝑌

𝐶𝑜𝑟 𝑋, 𝑌 =
σ𝑖=1

𝑛 (𝑥𝑖− ҧ𝑥)(𝑦𝑖− ത𝑦)

σ𝑖=1
𝑛 𝑥𝑖− ҧ𝑥 2⋅ σ𝑖=1

𝑛 𝑦𝑖− ത𝑦 2
, where ҧ𝑥 =

1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 and ത𝑦 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖

• Example: in the linear regression example, we may take the uniform 
distribution of  𝑦1, 𝑦2, … , 𝑦𝑛 as the 1st random variable, and the uniform 
distribution of  ො𝑦1, ො𝑦2, … , ො𝑦𝑛 as the 2nd random variable

• Example: If  𝑋 and 𝑌 are independent, then 𝐶𝑜𝑟 𝑋, 𝑌 = 0
• Recall 𝐸 𝑋 ⋅ 𝑌 = 𝐸 𝑋 ⋅ 𝐸 𝑌



Lecture plan

• Supervised learning

• Simple linear regression

• Multiple linear regression



Multiple linear regression

• Now represent nonlinear relationships

• Transformations of  quantitative inputs: log, square-root, or square

• Basis expansion: 𝑥2 = 𝑥1
2, 𝑥3 = 𝑥1

3

• Numeric coding of  qualitative inputs

• Interactions between inputs: 𝑥3 = 𝑥1 ⋅ 𝑥2



Setting up the problem

• We’re giving a training set 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛). Let us assume 
that each 𝑥 has 𝑝 features in total

• We want to learn a linear regression model to map 𝑥’s to 𝑦’s: the linear 
model has 𝑝 + 1 variables in total, 𝛽0, 𝛽1, … , 𝛽𝑝



Matrix notations
• Feature matrix (note that we have added a column of  ones):

𝑋 =

1 𝑥1,1, … , 𝑥1,𝑝

1 𝑥2,1, … ,𝑥2,𝑝

⋮ ⋮
1 𝑥𝑛,1, … , 𝑥𝑛,𝑝

• Label vector:

𝑦 =

𝑦1

𝑦2

⋮
𝑦𝑛

• Predicted label:

ෝ𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝, for 𝑖 = 1,2, … , 𝑛 

Exercise: what is the dimension 

of  𝑿, 𝒚, 𝜷, respectively?



Matrix notations

• Let us stack the variables we need to estimate together

𝛽 =

𝛽0

𝛽1

…
𝛽𝑝

• Using matrix multiplication rule, we shall verify that

ො𝑦 = 𝑋𝛽

Where ො𝑦 =

ො𝑦1

ො𝑦2

⋮
ො𝑦𝑛



Matrix multiplication

• Let 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑛×𝑝, their product 𝐶 = 𝐴𝐵 ∈ ℝ𝑚×𝑝

• Number of  columns of  𝐴 must be equal to the number of  rows of  𝐵

• Compute the product 𝐶 = 𝐴𝐵 using

𝑪𝒊,𝒋 = ෍

𝒌=𝟏

𝒏

𝑨𝒊,𝒌𝑩𝒌,𝒋

• An illustration

• Exercise: multiply 𝐴 = [1,2] with 𝐵 =
1 2
2 1



Start with the one-dimensional case

• Fitting a line with coefficient 𝛽1 ∈ ℝ and intercept 𝛽0 ∈ ℝ

ෝ𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖

• Recall matrix notation: ො𝑦 =

𝑦1

𝑦2

⋮
𝑦𝑛

, 𝑋 =

1 𝑥1

1 𝑥2

⋮ ⋮
1 𝑥𝑛

• Exercise: verify that ො𝑦 = 𝑋𝛽



Move to the multi-dimensional case

• Fitting a hyperplane with coefficients 𝛽1, 𝛽2, … , 𝛽𝑝 and intercept 𝛽0

• Exercise: First verify that the predicted labels are ො𝑦 = 𝑋𝛽

• Recall that MSE metric:

෠𝑳 𝜷 =
𝟏

𝒏
෍

𝒊=𝟏

𝒏

(𝒙𝒊
⊤𝜷 − 𝒚𝒊)𝟐 =

𝟏

𝒏
෍

𝒊=𝟏

𝒏

(ෝ𝒚𝒊 − 𝒚𝒊)𝟐 =
𝟏

𝒏
(𝒚 − 𝑿𝜷)𝑻 𝒚 − 𝑿𝜷

• We’ll set the derivatives to zero: 
𝜕෠𝐿(𝛽)

𝜕𝛽0
,

𝜕෠𝐿(𝛽)

𝜕𝛽1
, … ,

𝜕෠𝐿(𝛽)

𝜕𝛽𝑝



Gradient descent

• To minimize the loss ෠𝐿(𝛽), we can use optimization algorithms like 
gradient descent

• The gradient descent algorithm

• Initialize 𝛽0

• Let ∇෠𝐿(𝛽𝑡) be the gradient of  the training loss at 𝛽𝑡

• Let 𝜂 be a learning rate parameter

𝑤𝑡 ← 𝑤𝑡 − 𝜂 ⋅ ∇෠𝐿(𝑓𝑤𝑡
)



The gradient

• Definition: let 𝑓: ℝ𝑑 → ℝ be a multi-dimensional function, which takes 
a vector of  𝑑 variables 𝑋 as input, and outputs a real value 𝑦 = 𝑓(𝑋)

• Suppose 𝑓 is differentiable at every coordinate, then, the gradient of  𝑓, 
denoted as ∇𝑓, is defined as

∇𝑓 𝑋 =

𝜕𝑓(𝑋)

𝜕𝑋1
,

𝜕𝑓(𝑋)

𝜕𝑋2
,

⋯ ,
𝜕𝑓(𝑋)

𝜕𝑋𝑑



Stochastic gradient descent

• Motivation: If  the dataset is highly redundant, the gradient on the first 
half  is almost identical to the gradient on the second half
• Mini-batch stochastic gradient descent


