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Recap

* Rational agents: A central concept to our approach to Al

Khoury News

There'’s a new leasing agent
in the crowded Boston

Al Powered Leasing Agent rental market ... only this

Qualify leads, automate .con‘ve}sations, and handle follow- one's an Al
ups, so human agents can focus on closing.

Leasing agents spend much of their time asking and answering the same
renter questions over and over. So a team of Northeastern students built an Al

kab agent called HouseFly to do it for them.
ooKabvemo —

August 13,2025

https: / /wwwhouseflyai.com/ by Elizabeth S, Leaver Share artcle | ¢>




Rational agents

* https://github.com/SWE-agent/SWE-agent: automatically fix GitHub
issues using your LM of choice

* https://swe-agent.com/latest/installation/codespaces/




Agents and environments

* Agents interact with environments through sensors and actuators
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Rationality

* Four necessary parts:
* Performance measure: defining the criterion of success
* Prior knowledge of the environment
* Actions that the agent can perform

* Agent’s percept sequence to date

* Rational agent: For each possible percept sequence, a rational agent
selects an action that maximizes its performance measure in expectation,
given percept sequence and prior knowledge




Properties of task environments

* Fully observation vs. partially observable: esp. relevant when we
study Reinforcement Learning and sequential decision-making

* Single-agent vs. multi-agent: cooperative vs. competitive?

* Episodic vs. sequential: the next episode does not depend on the
actions taken in previous episodes (assembly lines); otherwise, current
decision could atfect future decisions (chess, taxi dertving)

* Static vs. dynamic: Crossword puzzles are static, while taxi driving is
clearly dynamic



The structure of agents

* Model-based agents use a transition model and a sensor model to keep
track of state of the world

* Goal-based agents: Searching and planning
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Utility-based agents

* For example, given a destination, many action sequences get us to
achieve the goal, but some are quicker, safer, or cheaper (e.g,, no toll).

* Economists and computer scientists use the term “utility” to refer to the
“happiness” to achieve the goal

* Model-free agent: learn what action is best in a particular situation
without learning exactly how that action changes the environment




Learning agents (finish recap)

* Four conceptual components
* Learning element: making improvements
* Performance element: selecting external actions

* Critic: gives feedback on how the agent is doing and determines how
performance should be modified to do better

* Problem generator: suggesting actions that will lead to new and informative
expetiences




Machine learning overview

Supervised learning

Neural networks and deep
learning

Natural language processing




Lecture plan

* Supervised learning

* Simple linear regression




Matrices and vectors

* Matrices: A rectangular array of numbers

a1’1 alln
A =

am’l nnn am,n

* Vectors: An array consisting of a single column

-




Simple linear regression

* Let us consider the simplest case of a linear regression problem: We are
otving a list of one-dimensional features and their corresponding labels.
We want to build a regression model to achieve that

* Examples: Predicting rental costs, advertising, marketing, etc

* Input: (x1,v1), (X2, V2), oory, (X1, Vi) (assume we have already done the
training/test split)

* Output: a linear model parameterized by fy and (4




Examples of [y and [

* Fitting a regression model mapping TA ad spending to Sales amount

Bo: Intercept
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Setting up the linear model

* Recall the input to the problem: (x1,¥1), (X2, ¥2), «.., (Xn, V) (this is the
training data)

* Let us set up a predicted label for each sample:
=ﬁ0+xiﬁ1,fori — 1 2

* Next, let us set up the mean squared error metric:

L(,B) =£2(yi_yi)2 2(,Bo+xl,81 yl)z
=1

;

Where [ = 3
1




Solving for By and £

* Recall that L(B) = % " 1(Bo + x;B1 — v;)*; we would like to minimize

the MSE metric
* We’re going to set the detivatives of L with respect to By, B as zeto
IL(B) 2 z"
= — (Bo +xiB1—v;) =0
aﬁo n i=q IBO 1181 Vi
oL(B) _ 2
0B, ;z xi(Bo + xif1 —yi) =0

1=1




Solving for By and £

* We can re-arrange the derivatives to be zero as follows
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Final solution

* This 1s a two-by-two linear system, which can be solved explicitly

B (% 7il=1xi2 _% i=1xi) ’ (% ?=1Yi)




Takeaways

* In order to have a valid solution, we need that

n 2

n
1 5 1
n n

=1 =1

This is true as long as the Xx;’s are not all the same!

* We can use the explicit expressions of [, p1 to derive confidence
intervals

* This 1s a bit advanced, but the high-level idea 1s we assume the X;’s are Gaussian,
from which we could derive the distribution of Sy, b3




Summary of simple linear regression

* After solving By, p1, we could use the estimated coefficients to make
predictions on unseen regions

y = B1x +




Evaluation metrics

e R? statistic measures the proportion of variance explained

RSS (Residual sum of squares) = Y1 (V; — J;)*

TSS (Total sum of squares) = Y.im 1 (V; — y)?, where y = % Vi
P2 _ TSS — RSS _ 1 RSS
~TSS  © TSS

R? always takes on a value between 0 and 1




Evaluation metrics

e Correlation between two random variables 1s another measure of linear
relationship between X and Y

Cor(X,Y) = —=EEED2 yhere £ = =Y, x; and ¥ =~ X, ¥,
Jzz;loci—f)z-Jz;’;lm—@z n "

* Example: in the linear regression example, we may take the uniform
distribution of yq, V5, ..., ¥y, as the 15 random variable, and the uniform
distribution of V4, V5, ..., ¥, as the 224 random variable

e Example: If X and Y are independent, then Cor(X,Y) = 0
* Recal E[X - Y] = E[X] - E[Y]




Lecture plan

* Supervised learning

* Simple linear regression
* Multiple linear regression




Multiple linear regression

* Now represent nonlinear relationships
* Transformations of quantitative inputs: log, square-root, or square
* Basis expansion: X, = X% x3 = x3
* Numeric coding of qualitative inputs

* Interactions between inputs: X3 = X1 * X3




Setting up the problem

* We’re giving a training set (x1, V1), (X2, ¥2), -, (X, ¥n). Let us assume
that each X has p features in total

* We want to learn a linear regression model to map X’s to y’s: the linear
model has p + 1 variables in total, By, B1, ..., Bp




Matrix notations

* Feature matrix (note that we have added a column of ones):

e |.abel vector:

V1
y = y 2 Exercise: what 1is the dimension
' of X, y, B, tespectively?
Vn |

* Predicted label:
5/\1' — BO + ,lem + ﬁle',z + .-+ ﬁpxl‘,p, fori = 1,2, e, N




Matrix notations

* Let us stack the variables we need to estimate together
_ﬁo_
b1
By

* Using matrix multiplication rule, we shall verity that

y=Xp

—- N\ -

Y1
Where y = y:Z

Vi




Matrix multiplication
e Let A € R™" B € RV their product C = AB € R"™*P

* Number of columns of A must be equal to the number of rows of B

* Compute the product C = AB using 3
n It b, b 1l
b..fb2s
Cij = 2 A; By - T T
= BT F
* An illustration Al
53'1|a3-2—o

* Exercise: multiply A = [1,2] with B = E ﬂ




Start with the one-dimensional case

* Fitting a line with coefficient f; € R and intercept 5 € R

Vi = Bo + P1X;

V1] 1 xq]
* Recall matrix notation: y = 3’:2 X = 1: sz
| Yn 1 x,

* Exercise: verify that § = X[5




Move to the multi-dimensional case

* Fitting a hyperplane with coefficients 81, 5, ..., Bp and intercept By
* Exercise: First verify that the predicted labels are y = X[
* Recall that MSE metric:

- 1" | B el 1
L) =), B-y)'=1)  Gi=y)'= 0~ XB)(y~XP)

[ =1
OL(B) OL(B) dL(B)
0By * 9B 7 9Py

e We’ll set the derivatives to zero:




Gradient descent

* To minimize the loss L([), we can use optimization algorithms like
gradient descent
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* The gradient descent algorithm
* Initialize (B,
e Let VL(B;) be the gradient of the training loss at 3

* Letn be a learning rate parameter

We & We — 17 Vi(fwt)




The gradient

* Definition: let f: R% — R be a multi-dimensional function, which takes
a vector of d variables X as input, and outputs a real value y = f(X)

* Suppose f is differentiable at every coordinate, then, the gradient of f,

denoted as Vf, is defined as DF(X) -
0X, ’

0f (X)

Vi) =| ax,

dF (X)
ox, .




Stochastic gradient descent

e Motivation: If the
half 1s almost ident'l




