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Recap: Linear regression framework

• Given examples as training data, design a learning algorithm to learn a 
predictor that maps unseen input to an output value

𝜷𝟏: Slope

𝜷𝟎: Intercept



Loss function: How good is a predictor?

• Hypothesis class: which predictor to choose from?

• Design a loss function. Question: which loss function?



Optimization algorithm

• Goal: minimize the training loss over 𝛽

• Definition (gradient): let 𝑓: ℝ𝑑 → ℝ be a multi-dimensional function, 
which takes a vector of  𝑑 variables 𝑋 as input, and outputs a real value 
𝑦 = 𝑓(𝑋). Suppose 𝑓 is differentiable at every coordinate, then, the 
gradient of  𝑓, denoted as ∇𝑓, is defined as
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Computing the gradient

• Objective function:

TrainingLoss(𝛽) =
1
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⊤𝛽 − 𝑦𝑖
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• Gradient of  the loss (use chain rule):

∇𝛽TrainingLoss(𝛽) =
1

𝑛
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Boston housing dataset example
• Boston housing dataset:

• CRIM: per capita crime rate by town
• ZN: proportion of  residential land zoned for lots over 25,000 sqft
• INDUS: proportion of  non-retail business acres per town
• CHAS: Charles River dummy variable (1 if  tract bounds river; 0 otherwise)
• NOX: nitric oxides concentration (parts per 10 million)
• RM: average number of  rooms per dwelling
• AVG: proportion of  owner-occupied units built prior to 1940
• DIS: weighted distances to five Boston employment centers
• RAD: index of  accessibility to radial highways
• TAX: full-value property-tax rate per $10,000
• PTRATIO: pupil-teacher ratio by town
• B-1000: (Bk - 0.63)^2 where Bk is the proportion of  blacks by town
• LSTAT: % lower status of  the population
• MEDV: Median value of  owner-occupied homes in $1000's



Gradient descent in python

• Loading the dataset into python



Gradient descent in python



Stochastic gradient descent in python



Lecture plan

• Supervised learning
• Linear classification



Classification example

• Handwritten digit classification

• Colored handwritten digits

• Street view house numbers



Image classification

• Image classification: assign a 
label to an entire image or 
photograph

• Object recognition

CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 different classes, with 6,000 images of  each class



Binary classification

• Information on ten thousand customers

• default: whether the customer defaulted 
on their debt

• student: whether the customer is a student

• balance: the average balance that the 
customer has remaining on their credit 
card after making their monthly payment

• income: income of  customer

• Predict which customers will default on 
their credit card debt



Iris dataset

• Pattern recognition: Predict class of  iris plant. There are three classes



Logistic function

• Zero-one loss: Loss value is zero if  predicted label is correct, is one 
otherwise

• Logistic loss provides an approximation of  the zero-one loss

• Stanford logistic function: 
1

1+𝑒−𝑣



Logistic loss

• Insert 𝑣 from a linear model: 
exp(𝑣)

1+exp(𝑣)
, still ranging between zero and one

• Logistic loss: negative log of  logistic function

ℓ 𝑣 = −log
exp(𝑣)

1 + exp(𝑣)
= log 1 + exp(−𝑣)

• Question: Is ℓ(10) positive or negative? What about ℓ −10 ?



Logistic regression

• Suppose the labels are either +1 or −1
• For every sample 𝑥𝑖 , 𝑦𝑖 , suppose 𝑥𝑖 includes 𝑝 features in total, indexed by 

subscripts as 𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑝

• Coefficients of  the logistic regression model: 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝. Let

𝑣𝑖 = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝

• The log-loss of  𝑥𝑖 , 𝑦𝑖 is
log 1 + exp(−𝑦𝑖 ⋅ 𝑣𝑖)

• Averaged training loss over a dataset of  size 𝑛

1

𝑛
෍

𝑖=1

𝑛

log 1 + exp −𝑦𝑖 ⋅ 𝑣𝑖



Log probability

• The logit odds of  a sample 𝑋, 𝑌 is

log
𝑃𝑟 𝑌 = 1 𝑋
𝑃𝑟 𝑌 = 0 𝑋 = 𝛽⊤𝑋 = 𝛽0 + 𝛽1 ⋅ student + 𝛽2 ⋅ balance + 𝛽3 ⋅ income, 

where 𝑋 = (1, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑖𝑛𝑐𝑜𝑚𝑒), and

Pr 𝑌 = 1|𝑋 =
1

1 + 𝑒−(𝛽0+𝛽1⋅student+𝛽2⋅balance+𝛽3⋅income)

• Logistic regression: Find 𝛽0, 𝛽1, 𝛽2, 𝛽3 by minimizing the averaged log-
loss over the training set

• Prediction: if  𝑣𝑖 > 0, ො𝑦𝑖 = +1; if  𝑣𝑖 ≤ 0, ෝ𝑦𝑖 = −1



Example

• Mixture of  Gaussians: Crab measurements of  
forehead to body length ratio among 1000 crabs

Reference: http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html 



Linear classifier

Suppose we have 𝐾 classes, we approximate the data distribution of  each 
class with a Gaussian distribution

• 𝜋𝑘 : prior probability that a randomly chosen observation comes from the 
𝑘-th class

• 𝑓𝑘 𝑋 = Pr(𝑋|𝑌 = 𝑘): density function of  𝑋 coming from the 𝑘-th class

• Pr(𝑌 = 𝑘|𝑋 = 𝑥): probability of  𝑥 having label 𝑘



Sepal and petal of  iris



Example: Iris dataset

• 50 samples from each of  three classes of Iris (versicolor, setosa, virginica)

• Four features: sepal length, sepal width, petal length, petal width



Distribution of  features
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Generative model: Linear discriminant analysis

• Model Pr 𝑋 = 𝑥 ∣ 𝑌 = 𝑘

𝑋 =

sepal length
sepal width
petal length
petal width

𝑌 ∈ {versicolor, setosa, virginica}

by a multivariate normal distribution 𝑁(𝜇𝑘 , Σ) with mean 𝜇𝑘 , covariance matrix Σ



One-dimensional data

• For the 𝑘-th class, model density function as 𝑁(𝜇𝑘 , 𝜎2)

• Density function: Pr 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑓𝑘 𝑥 =
1

2𝜋𝜎𝑘
exp −

1

2𝜎𝑘
2 𝑥 − 𝜇𝑘
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• Within each class, the features have a center 𝜇𝑘 for every class 𝑘 and common 
variance 𝝈𝟐



Multi-dimensional case

• 𝑁(𝜇, Σ) is a multi-dimensional Gaussian with mean 𝜇, covariance Σ: 𝜇 is 
a 𝑝-dimensional vector, covariance is a 𝑝 × 𝑝 matrix: Σ = 𝐸[𝑥𝑥⊤]

• Illustration of  a two-dimensional multivariate normal distribution

• Two dimensions: blue and red

• Projection to every dimension is still a Gaussian

• Centered at zero



Multi-dimensional data

• For the 𝑘-th class, model density function as 𝑁(𝜇𝑘 , Σ)

• Density function

 Pr 𝑋 = 𝑥|𝑌 = 𝑘 =  𝑓𝑘 𝑥 =
1

2𝜋
𝑝
2 Σ

1
2

exp −
1

2
𝑥 − 𝜇𝑘

⊤Σ 𝑥 − 𝜇𝑘

• Within each class, the features have a center 𝜇𝑘 for every class 𝑘 
and common variance 𝝈𝟐



Example

• Example with a two-dimensional synthetic dataset

Dash lines: Bayes decision boundaries Solid lines: LDA decision boundaries 

(they are linear)



Estimating the center

How does this work?

1. Estimate the center of  each class 𝜇𝑘 :

Ƹ𝜇𝑘 =
1

#{𝑖: 𝑦𝑖 = 𝑘}
෍

𝑖: 𝑦𝑖=𝑘

𝑥𝑖



Estimating the covariance

How does this work?

2. Estimate the common covariance matrix Σ

• One-dimensional data: ො𝜎2 =
1

𝑛
σ𝑘=1

𝐾 σ𝑖:𝑦𝑖=𝑘(𝑥𝑖− ො𝜇𝑘)2

• Multi-dimensional data: Compute the vectors of  deviations 
(𝑥1− ො𝜇𝑦1

), (𝑥2− ො𝜇𝑦2
), ⋯ , (𝑥𝑛− ො𝜇𝑦𝑛

) and their covariance



Estimating the prior

How does this work?

3. Estimated by the fraction of  training samples of  class 𝑘: Pr 𝑌 = 𝑘 = ො𝜋𝑘

ො𝜋𝑘 =
#{𝑖:𝑦𝑖=𝑘}

𝑛
: Fraction of  training samples of  class 𝑘



Prediction

• Recall: Pr(𝑌 = 𝑘|𝑋 = 𝑥) is probability of  𝑥 having label 𝑘

• LDA predicts the label with highest probability

• Bayes rule

Pr 𝑌 = 𝑘|𝑋 = 𝑥 =
𝑃𝑟(𝑌 = 𝑘, 𝑋 = 𝑥)

𝑃𝑟(𝑋 = 𝑥)
=

𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑘 ⋅ 𝑃𝑟(𝑌 = 𝑘)

σ𝑖=1
𝐾 𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑖 ⋅ 𝑃𝑟(𝑌 = 𝑖)



Lecture plan

• Supervised learning

• Linear regression

• Linear classification

• Group robust regression



Spurious correlations

• Classifying water bird vs. land bird



Spurious correlations

• The Celebrities dataset: strong correlation between blonde hair color 
with female gender



Linear regression with groups

• Suppose we have 𝐺 groups, 1,2, … , 𝐺, in total

• In the previous example: {water bird, water background}, {water bird, land 
background}, {land bird, water background}, {land bird, land background}

• The predictor does not use group information 𝑔

• To encode this prior into the model, we could introduce a per-group loss

෠𝐿𝑔 𝛽 =
1

𝑛𝑔
෍

𝑥,𝑦 ∈𝐷𝑔

ℓ 𝑥, 𝑦; 𝛽

• Instead of  minimizing the average loss, we could now minimize the 
maximum group loss instead

min
𝛽

max
𝑔

෠𝐿𝑔 𝛽



Average loss vs. maximum group loss

• Illustration in a toy example with six data points, separated into two 
groups



Training via gradient descent

• Gradient descent for group robust minimization

• Initialize 𝛽0

• Let ∇෠𝐿(𝛽𝑡) be the gradient of  the training loss at 𝛽𝑡

• Let 𝜂 be a learning rate parameter

𝛽𝑡 ← 𝛽𝑡 − 𝜂 ⋅ ∇gt
෠𝐿 𝑓𝛽𝑡

,

Where 𝑔𝑡 ← arg max
𝑔

෠𝐿𝑔 𝛽𝑡


