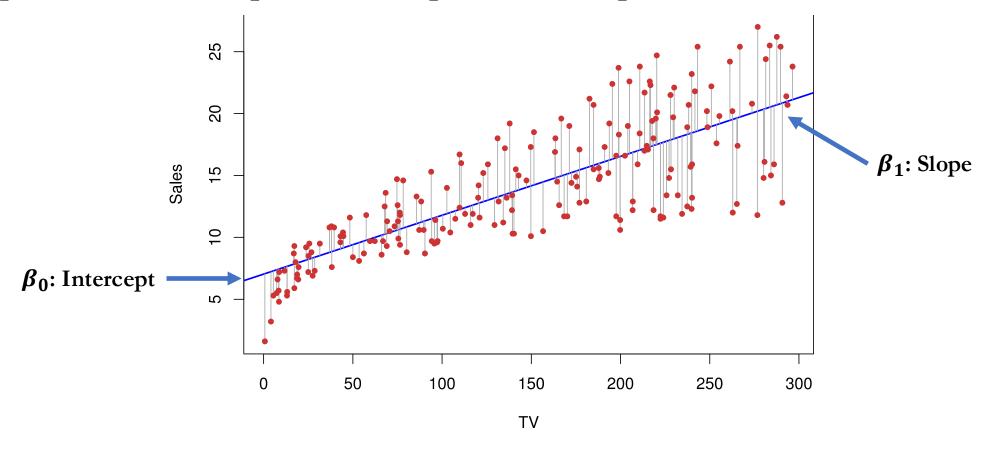
Introduction to Artificial Intelligence

Lecture 3: Supervised learning II

September 11, 2025

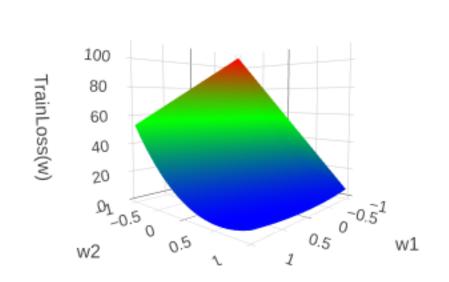
Recap: Linear regression framework

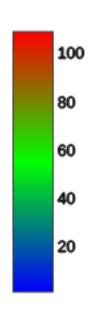
• Given examples as training data, design a learning algorithm to learn a predictor that maps unseen input to an output value



Loss function: How good is a predictor?

- Hypothesis class: which predictor to choose from?
 - Design a loss function. Question: which loss function?





Optimization algorithm

- Goal: minimize the training loss over β
- Definition (gradient): let $f: \mathbb{R}^d \to \mathbb{R}$ be a multi-dimensional function, which takes a vector of d variables X as input, and outputs a real value y = f(X). Suppose f is differentiable at every coordinate, then, the gradient of f, denoted as ∇f , is defined as

$$\nabla f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial X_1}, \\ \frac{\partial f(X)}{\partial X_2}, \\ \cdots, \\ \frac{\partial f(X)}{\partial X_d} \end{bmatrix}$$

Computing the gradient

• Objective function:

TrainingLoss(
$$\beta$$
) = $\frac{1}{n} \sum_{i=1}^{n} (x_i^{\mathsf{T}} \beta - y_i)^2$

• Gradient of the loss (use chain rule):

$$\nabla_{\beta} \text{TrainingLoss}(\beta) = \frac{1}{n} \sum_{i=1}^{n} 2(x_i^{\mathsf{T}} \beta - y_i) x_i$$

Boston housing dataset example

- Boston housing dataset:
 - CRIM: per capita crime rate by town
 - ZN: proportion of residential land zoned for lots over 25,000 sqft
 - INDUS: proportion of non-retail business acres per town
 - CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
 - NOX: nitric oxides concentration (parts per 10 million)
 - RM: average number of rooms per dwelling
 - AVG: proportion of owner-occupied units built prior to 1940
 - DIS: weighted distances to five Boston employment centers
 - RAD: index of accessibility to radial highways
 - TAX: full-value property-tax rate per \$10,000
 - PTRATIO: pupil-teacher ratio by town
 - B-1000: (Bk 0.63)^2 where Bk is the proportion of blacks by town
 - LSTAT: % lower status of the population
 - MEDV: Median value of owner-occupied homes in \$1000's

Gradient descent in python

• Loading the dataset into python

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
# Any results you write to the current directory are saved as output.
from pandas import read csv
#Lets load the dataset and sample some
column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MED
data = read csv('./housing.csv', header=None, delimiter=r"\s+", names=column names)
from sklearn import preprocessing
# Let's scale the columns before plotting them against MEDV
min_max_scaler = preprocessing.MinMaxScaler()
column sels = ['LSTAT', 'INDUS', 'NOX', 'PTRATIO', 'RM', 'TAX', 'DIS', 'AGE']
x = data.loc[:,column_sels]
v = data['MEDV']
x = pd.DataFrame(data=min_max_scaler.fit_transform(x), columns=column_sels)
y = np.log1p(y).values.reshape(-1, 1)
for col in x.columns:
    if np.abs(x[col].skew()) > 0.3:
       x[col] = np.log1p(x[col])
```


Gradient descent in python

```
# Training using gradient descent
m, n = x.shape
use bias = True
if use_bias:
    X = np.hstack([np.ones((m, 1)), x])
   theta = np.zeros((n + 1, 1))
else:
   X = x
    theta = np.zeros((n, 1))
learning_rate = 0.1
iters = 5000
for _ in range(iters):
    y_pred = X @ theta
    grad = (X.T @ (y_pred - y)) / m
    theta -= learning_rate * grad
train_mse = np.mean((X @ theta - y) ** 2)
print("training set MSE:", train_mse)
training set MSE: 0.03838560047396505
```


Stochastic gradient descent in python

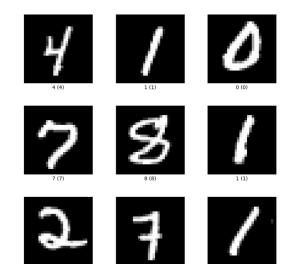
```
# Training using mini-batch gradient descent
m, n = x.shape
use bias = True
if use bias:
   X = np.hstack([np.ones((m, 1)), x])
else:
   X = x
rng = np.random.default_rng(42)
idx = rng.permutation(m)
batch_size = 32
batches = [idx[i:i+batch_size] for i in range(0, m, batch_size)]
theta = np.zeros((n + 1, 1))
iters = 5000
learning_rate = 0.1
for epoch in range(iters):
    for batch in batches:
        X_batch = X[batch]
        y_batch = y[batch]
        y_pred_batch = X_batch @ theta
        grad = (X_batch.T @ (y_pred_batch - y_batch)) / X_batch.shape[0]
        theta -= learning rate * grad
y_pred = X @ theta
train_mse = np.mean((y_pred - y) ** 2)
print("training set MSE:", train_mse)
```


Lecture plan

- Supervised learning
 - Linear classification

Classification example

- Handwritten digit classification
- Colored handwritten digits
- Street view house numbers



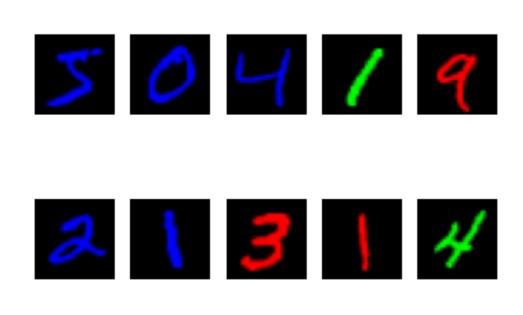
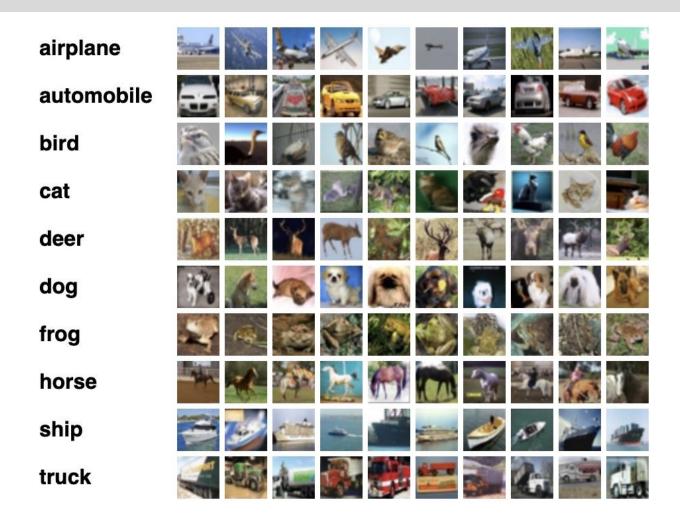


Image classification

- Image classification: assign a label to an entire image or photograph
- Object recognition



CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 different classes, with 6,000 images of each class

Binary classification

- Information on ten thousand customers
 - default: whether the customer defaulted on their debt
 - student: whether the customer is a student
 - balance: the average balance that the customer has remaining on their credit card after making their monthly payment
 - income: income of customer

 Predict which customers will default on their credit card debt

```
## # A tibble: 10,000 \times 4
      default student balance income
                         <dbl> <dbl>
      <fct>
              <fct>
    1 No
                          730. 44362.
              Yes
                          817. 12106.
                         1074. 31767.
    3 No
    4 No
                          529. 35704.
                          786. 38463.
    5 No
                          920. 7492.
    6 No
              Yes
                          826. 24905.
    7 No
    8 No
              Yes
                          809. 17600.
    9 No
                         1161. 37469.
## 10 No
                               29275.
## # ... with 9,990 more rows
```

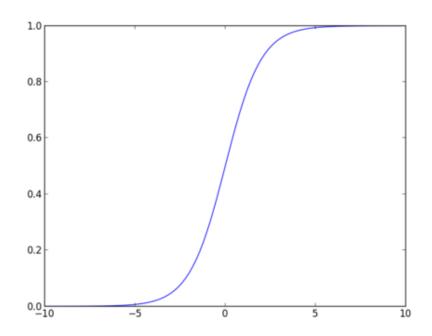

Iris dataset

• Pattern recognition: Predict class of iris plant. There are three classes



Logistic function

- Zero-one loss: Loss value is zero if predicted label is correct, is one otherwise
- Logistic loss provides an approximation of the zero-one loss
 - Stanford logistic function: $\frac{1}{1+e^{-v}}$



Logistic loss

- Insert v from a linear model: $\frac{\exp(v)}{1+\exp(v)}$, still ranging between zero and one
- Logistic loss: negative log of logistic function

$$\ell(v) = -\log \frac{\exp(v)}{1 + \exp(v)} = \log(1 + \exp(-v))$$

• Question: Is $\ell(10)$ positive or negative? What about $\ell(-10)$?

Logistic regression

- Suppose the labels are either +1 or -1
 - For every sample x_i, y_i , suppose x_i includes p features in total, indexed by subscripts as $x_{i,1}, x_{i,2}, \dots, x_{i,p}$
 - Coefficients of the logistic regression model: $\beta_0, \beta_1, \beta_2, \dots, \beta_p$. Let $v_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p}$
- The log-loss of x_i, y_i is $\log(1 + \exp(-y_i \cdot v_i))$
- Averaged training loss over a dataset of size n

$$\frac{1}{n}\sum_{i=1}^{n}\log(1+\exp(-y_i\cdot v_i))$$

Log probability

• The logit odds of a sample X, Y is

$$\log \left[\frac{\Pr(Y = 1 | X)}{\Pr(Y = 0 | X)} \right] = \beta^{\mathsf{T}} X = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income},$$

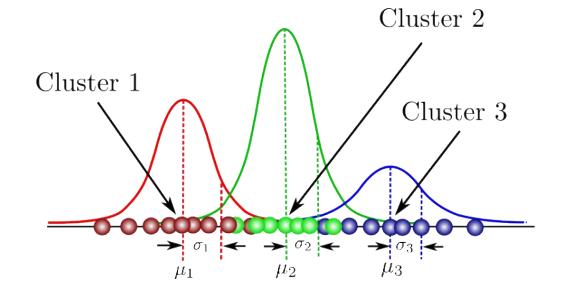
where X = (1, student, balance, income), and

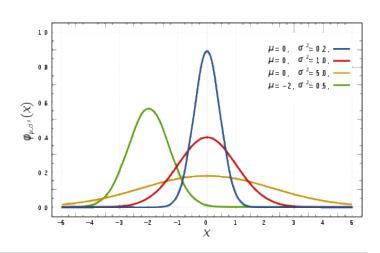
$$\Pr[Y = 1 | X] = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income})}}$$

- Logistic regression: Find β_0 , β_1 , β_2 , β_3 by minimizing the averaged logloss over the training set
- Prediction: if $v_i > 0$, $\hat{y}_i = +1$; if $v_i \le 0$, $\hat{y}_i = -1$

Example

• Mixture of Gaussians: Crab measurements of forehead to body length ratio among 1000 crabs





Reference: http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html

Linear classifier

Suppose we have K classes, we approximate the data distribution of each class with a Gaussian distribution

• π_k : prior probability that a randomly chosen observation comes from the k-th class

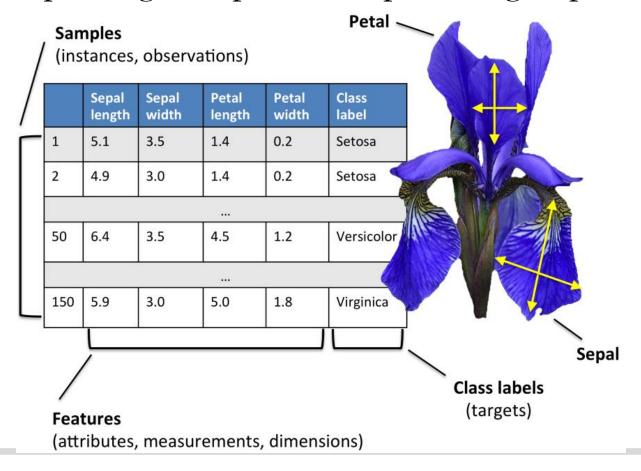
• $f_k(X) = \Pr(X|Y = k)$: density function of X coming from the k-th class

• Pr(Y = k | X = x): probability of x having label k

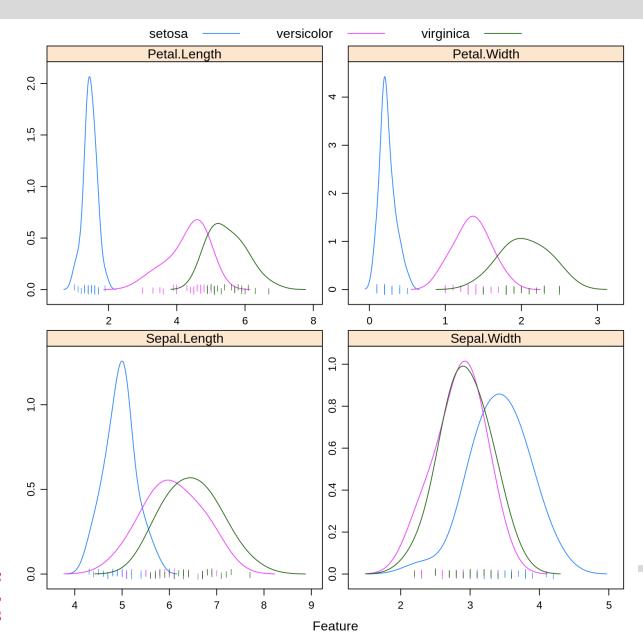
Sepal and petal of iris

Example: Iris dataset

- 50 samples from each of three classes of Iris (versicolor, setosa, virginica)
- Four features: sepal length, sepal width, petal length, petal width



Distribution of features



Iris Versicolor

Iris Setosa

Iris Virginica

Generative model: Linear discriminant analysis

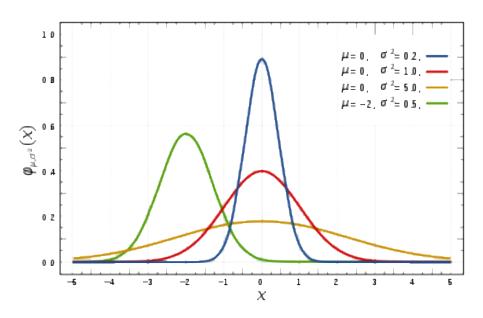
• Model $Pr[X = x \mid Y = k]$

 $Y \in \{\text{versicolor}, \text{setosa}, \text{virginica}\}$

by a multivariate normal distribution $N(\mu_k, \Sigma)$ with mean μ_k , covariance matrix Σ

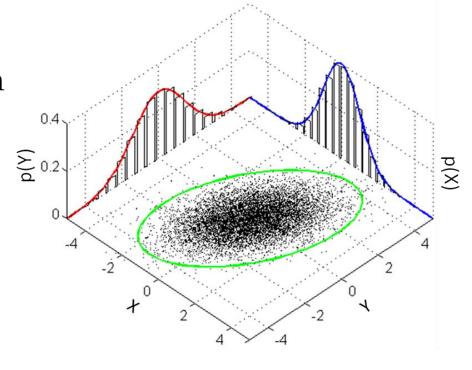
One-dimensional data

- For the k-th class, model density function as $N(\mu_k, \sigma^2)$
- Density function: $\Pr[X = x | Y = k] = f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{1}{2\sigma_k^2}(x \mu_k)^2\right)$
- Within each class, the features have a center μ_k for every class k and **common** variance σ^2



Multi-dimensional case

- $N(\mu, \Sigma)$ is a multi-dimensional Gaussian with mean μ , covariance Σ : μ is a p-dimensional vector, covariance is a $p \times p$ matrix: $\Sigma = E[xx^{\top}]$
- Illustration of a two-dimensional multivariate normal distribution
- Two dimensions: blue and red
- Projection to every dimension is still a Gaussian
- Centered at zero



Multi-dimensional data

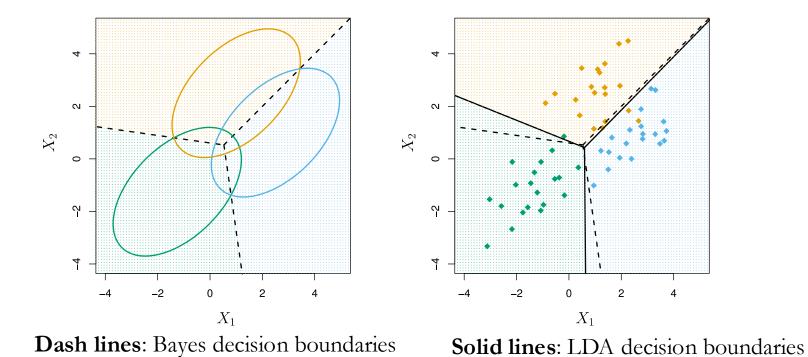
- For the k-th class, model density function as $N(\mu_k, \Sigma)$
- Density function

$$\Pr[X = x | Y = k] = f_k(x) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_k)^{\top} \Sigma(x - \mu_k)\right)$$

• Within each class, the features have a center μ_k for every class k and common variance σ^2

Example

• Example with a two-dimensional synthetic dataset



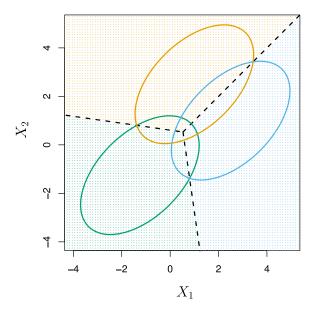
(they are linear)

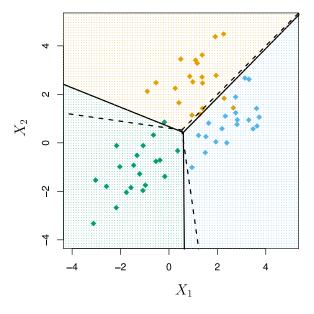
Estimating the center

How does this work?

1. Estimate the center of each class μ_k :

$$\hat{\mu}_k = \frac{1}{\#\{i: y_i = k\}} \sum_{i: y_i = k} x_i$$

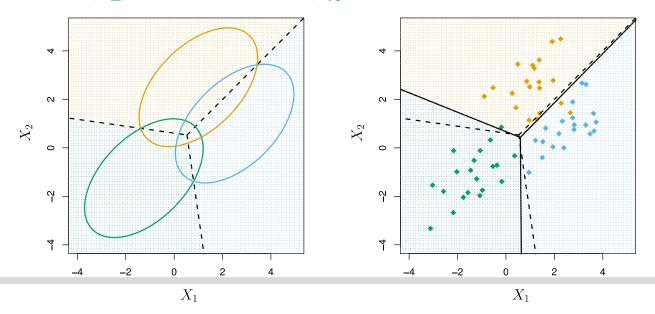




Estimating the covariance

How does this work?

- 2. Estimate the common covariance matrix Σ
- One-dimensional data: $\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^K \sum_{i:y_i=k} (x_i \hat{\mu}_k)^2$
- Multi-dimensional data: Compute the vectors of deviations $(x_1 \hat{\mu}_{y_1}), (x_2 \hat{\mu}_{y_2}), \dots, (x_n \hat{\mu}_{y_n})$ and their covariance

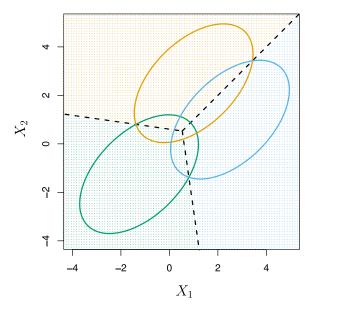


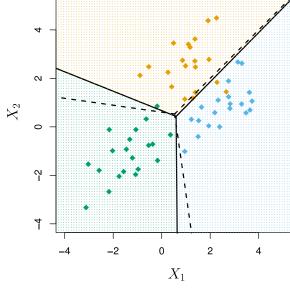
Estimating the prior

How does this work?

3. Estimated by the fraction of training samples of class k: $\Pr[Y = k] = \hat{\pi}_k$

$$\hat{\pi}_k = \frac{\#\{i: y_i = k\}}{n}$$
: Fraction of training samples of class k





Prediction

- Recall: Pr(Y = k | X = x) is probability of x having label k
- LDA predicts the label with highest probability
- Bayes rule

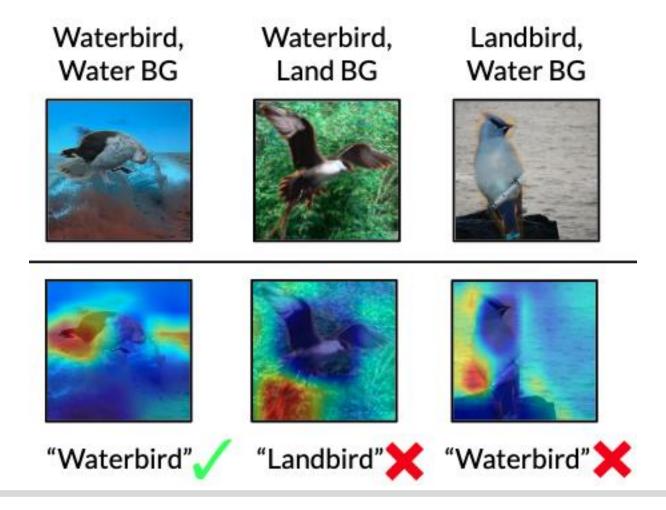
$$\Pr[Y = k | X = x] = \frac{Pr(Y = k, X = x)}{Pr(X = x)} = \frac{Pr(X = x | Y = k) \cdot Pr(Y = k)}{\sum_{i=1}^{K} Pr(X = x | Y = i) \cdot Pr(Y = i)}$$

Lecture plan

- Supervised learning
 - Linear regression
 - Linear classification
 - Group robust regression

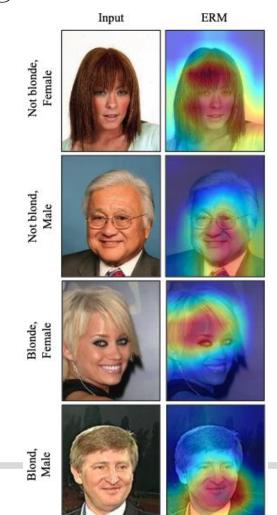
Spurious correlations

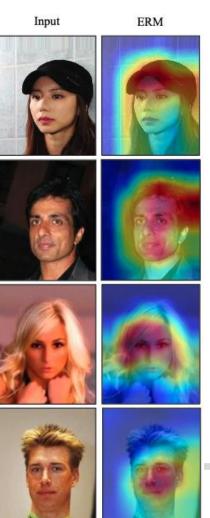
• Classifying water bird vs. land bird



Spurious correlations

• The Celebrities dataset: strong correlation between blonde hair color with female gender





Linear regression with groups

- Suppose we have G groups, 1, 2, ..., G, in total
 - In the previous example: {water bird, water background}, {water bird, land background}, {land bird, water background}, {land bird, land background}
- ullet The predictor does not use group information g
- To encode this prior into the model, we could introduce a per-group loss

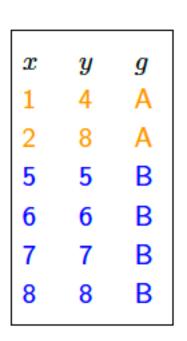
$$\widehat{L}_g(\beta) = \frac{1}{n_g} \sum_{(x,y) \in D_g} \ell(x,y;\beta)$$

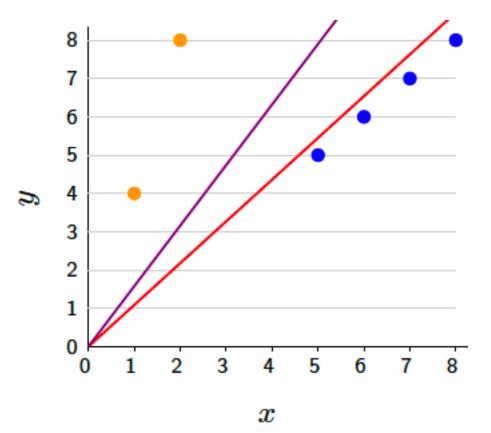
• Instead of minimizing the average loss, we could now minimize the maximum group loss instead

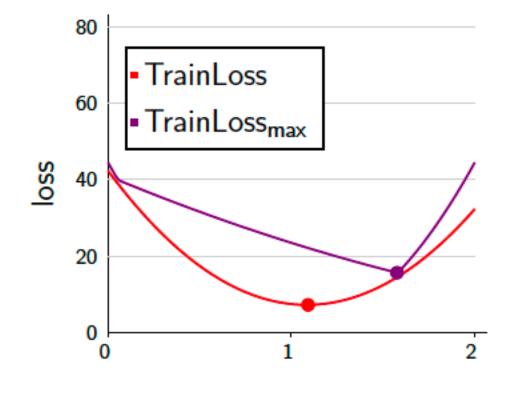
$$\min_{\beta} \max_{g} \hat{L}_{g}(\beta)$$

Average loss vs. maximum group loss

• Illustration in a toy example with six data points, separated into two groups







Training via gradient descent

- Gradient descent for group robust minimization
 - Initialize β_0
 - Let $\nabla \hat{L}(\beta_t)$ be the gradient of the training loss at β_t
 - Let η be a learning rate parameter

$$\beta_t \leftarrow \beta_t - \eta \cdot \nabla_{\mathsf{g_t}} \hat{L}(f_{\beta_t}),$$

Where $g_t \leftarrow \arg \max_g \hat{L}_g(\beta_t)$

