Introduction to Artificial Intelligence

Lecture 3: Supervised learning I1

September 11, 2025




Recap: Linear regression framework

* Given examples as training data, design a learning algorithm to learn a
predictor that maps unseen input to an output value
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Loss function: How good 1s a predictor?

* Hypothesis class: which predictor to choose from?

* Design a loss function. Question: which loss function?

100
80
&0
40

(A)SSOTUERIL

20

8 8 8 8 %

w2




Optimization algorithm

* Goal: minimize the training loss over 8

* Definition (gradient): let f: R% - R be a multi-dimensional function,
which takes a vector of d variables X as input, and outputs a real value

y = f(X). Suppose f is differentiable at every coordinate, then, the
gradient of f, denoted as V[ is defined as
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Computing the gradient

* Objective function:

. 1 2
Trainingl.oss(f) = " ?=1(XiT,3 — Yi)

* Gradient of the loss (use chain rule):

N 1N /T
Vg Trainingloss(B) = 52 Z(xl- f — yi)xi
=1




Boston housing dataset example

* Boston housing dataset:
* CRIM: per capita crime rate by town
* ZN: proportion of residential land zoned for lots over 25,000 sqft
* INDUS: proportion of non-retail business acres per town
* CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
* NOX: nitric oxides concentration (parts per 10 million)
* RM: average number of rooms per dwelling
* AVG: proportion of owner-occupied units built prior to 1940
* DIS: weighted distances to five Boston employment centers
* RAD: index of accessibility to radial highways
* TAX: tull-value property-tax rate per $10,000
* PTRATIO: pupil-teacher ratio by town
* B-1000: (Bk - 0.63)"2 where Bk is the proportion of blacks by town
* LSTAT: % lower status of the population
* MEDV: Median value of owner-occupied homes in $1000's




Gradient descent in python

* Loading the dataset into python

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/0 (e.g. pd.read_csv)

import os

# Any results you write to the current directory are saved as output.

from pandas import read_csv

#lLets load the dataset and sample some

column_names = ['"CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEC
data = read_csv('./housing.csv', header=None, delimiter=r"%s+", names=column_names)

from sklearn import preprocessing

# Let's scale the columns before plotting them against MEDV

nin_max_scaler = preprocessing.MinMaxScaler()

column_sels = ['LSTAT', 'INDUS', 'NOX', 'PTRATIO', 'BM', 'TAX', 'DIS', 'AGE']

x = data.loc[:,column_sels]

y = data['MEDV']

x = pd.DataFrame(data=min_max_scaler.fit_transform(x), columns=column_sels)
y = np.loglp(y).values.reshape(-1, 1)

for col in x.columns:
if np.abs({x[col].skew()) = @.3:
x[col]l = np.loglp(x[coll)




Gradient descent in python

# Training using gradient descent
m, n = X.shape

use_bias = True
if use_bias:
X = np.hstack( [np.ones((m, 1)), x])
theta = np.zeros{(n + 1, 1))
else:
X =x
theta = np.zeros((n, 1))

learning_rate = 0.1
iters = 5000

for _ in range(iters):
y_pred = X @ theta
grad = (X.T @ (y_pred - y)) / m
theta -= learning_rate * grad

train_mse = np.mean((X @ theta - y) #* 2)
print("training set MSE:", train_mse)

training set MSE: @.03838560047396585




Stochastic gradient descent in python

# Training using mini-batch gradient descent
m, n = xX.shape

use_bias = True
if use_bias:

X = np.hstack( [np.ones((m, 1)), x])
else:

X=X

rng = np.random.default_rng(42)

idx = rng.permutation(m)

batch_size = 32

batches = [idx[i:i+batch_size] for i in range(@, m, batch_size)]
theta = np.zeros((n + 1, 1))

iters = 5000

learning_rate = 0.1

for epoch in range(iters):
for batch in batches:
X_batch = X[batch]
y_batch = y[batch]
y_pred_batch = X_batch @ theta
grad = (X_batch.T @ (y_pred_batch - y_batch)) / X_batch.shape([@]
theta -= learning_rate #* grad

y_pred = X @ theta
train_mse = np.mean((y_pred - y) %% 2)
print("training set MSE:", train_mse)

training set MSE: 0.83709784026839069



Lecture plan

* Supervised learning
e Linear classification




Classification example

* Handwritten digit classification
* Colored handwritten digits

e Street view house numbers
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Image classification

* Image classification: assign a ~ airplane  fss . = v . . = i
label to an entire image or automobile E a E tg w3
photograph bird a = u ﬂ . ' . ! '
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CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 different classes, with 6,000 images of each class




Binary classification

e Information on ten thousand customers
## # A tibble: 10,000 x 4

e default: whether the customer defaulted

i #Hi#t default student balance income
on their debt ##  <fct> <fct> <dbl> <dbl>
e student: whether the customer is a student ## 1 No No 730. 44362.
* balance: the average balance that the #it 2 No ves 817. 12106.
. . . . ## 3 No No 1074. 31767.
customer has remaining on their credit

. . ## 4 No No 529. 35704.

card after making their monthly payment
## 5 No No 786. 38463.
* Income: income of customer B e S eo. i
## 7 No No 826. 24905.
## 8 No Yes 809. 17600.
* Predict which customers will default on ## 9 No No 1161. 37469.
## 10 No No @ 29275.

their credit card debt

## # .. with 9,990 more rows




Iris dataset

* Pattern recognition: Predict class of 1ris plant. There are three classes
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Iris Versicolor Iris Setosa Iris Virginica




Logistic function

* Zero-one loss: Loss value is zero if predicted label is correct, i1s one
otherwise

* Logistic loss provides an approximation of the zero-one loss
1

1+e~V

* Stanford logistic function:
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Logtstic loss

exp(v)
1+exp(v)’

 Insert v from a linear model: still ranging between zero and one

* Logistic loss: negative log of logistic function

£(v) = —log ] _el_sz(szv) = log(1 + exp(—v))




Logistic regression
* Suppose the labels are either +1 or —1

* For every sample X;, y;, suppose X; includes p features in total, indexed by
subscripts as X; 1, Xj 2, -+, X p

* Coefficients of the logistic regression model: Sy, B1, B2, .-, Bp- Let
V; = Pot+ P1xig + BaXiz + o+ Xy
* The log-loss of Xx;,y; 1s
log(1 + exp(—y; - v;))

* Averaged training loss o;lfer a dataset of size n

1
— " log(1 + exp(~y; - 1)
=1




Log probability

* The logit odds of a sample X, Y 1s

| [Pr(Y = 1|1X)

og (V= O|X)] = BTX = B, + B, - student + B, - balance + S5 - income,

where X = (1, student, balance, income), and

1

1+e —(Bo+L1-student+S,-balance+f3-income)

Prly = 1|X] =

* Logistic regression: Find B, B1, B2, 3 by minimizing the averaged log-
loss over the training set

* Prediction: if v; > 0,9; = +1;if v; <0,y; = —1




Example

* Mixture of Gaussians: Crab measurements of
forehead to body length ratio among 1000 crabs

Cluster 2

Cluster 1

Cluster 3

1 fi2 i 5o

Reference: http://blogmrtz.org/2014/04/22 /pearsons-polynomial.html e T




Linear classifier

Suppose we have K classes, we approximate the data distribution of each
class with a Gaussian distribution

* TTj: prior probability that a randomly chosen observation comes from the
k-th class

* f(X) = Pr(X|Y = k): density function of X coming from the k-th class

* Pr(Y = k|X = x): probability of x having label k




Sepal and petal of iris




Example: Iris dataset

* 50 samples from each of three classes of Iris (versicolor, setosa, virginica)

* Four features: sepal length, sepal width, petal length, petal width

Petal
Samples
(instances, observations)

Sepal Petal Petal Class
width length  width label

Setosa

2 4.9 3.0 1.4 0.2 Setosa

50 6.4 3.5 4.5 1.2 Versicolor

150 | 5.9 3.0 5.0 1.8 Virginica
| ] N
\ Sepal
/ Class labels
Features (targets)

(attributes, measurements, dimensions)




2.0

15

1.0

0.5

0.0

setosa

versicolor

Distribution of features

virginica

Petal.Length

Petal. Width

I I
2 4

Sepal.Length

Sepal.Width

AR

CE VPRl

Feature

Iris Versicolor

Iris Setosa

Iris Virginca



Generative model: Linear discriminant analysis
e Model Pr|X =x | Y = k]

‘sepal length’
sepal width
petal length

| petal width_

Y € {versicolor, setosa, virginica}

by a multivariate normal distribution N (1, X) with mean y, covariance matrix X




One-dimensional data

* For the k-th class, model density function as N (i, 0%)

. . 1 1
* Density function: Pr[X = x|Y = k] = f,(x) = mexp (—2713 (x — ,uk)z)

* Within each class, the features have a center U, for every class k and common
variance o




Multi-dimensional case

* N(u, ) is a multi-dimensional Gaussian with mean W, covariance X: U is
a p-dimensional vector, covariance is a p X p matrix: X = E[xx ]

e Jllustration of a two-dimensional multivariate normal distribution
e T'wo dimensions: blue and red

* Projection to every dimension is still a Gaussian

e Centered at zero




Multi-dimensional data
* For the k-th class, model density function as N (i, X)

* Density function

PriX = x|¥ = k] = fo(x) = —p—rexp -~ 3 (x — ) T20x - )
(2m)2[Z|2

* Within each class, the features have a center U, for every class k
and common variance ¢




Example

* Example with a two-dimensional synthetic dataset

-4 2 0 2 4 4 2 0 2 4

Dash lines: Bayes decision boundaries Solid lines: LDA decision boundaries
(they are linear)




Estimating the center

How does this work?

1. Estimate the center of each class uy:




Estimating the covartance
How does this work?
2. Estimate the common covariance matrix X
* One-dimensional data: 6% = %ngzl Zi:yi:k(xi_ﬁk)z

* Multi-dimensional data: Compute the vectors of deviations
(1 =0y, ), (x—[ly,), =+, (X —[ly ) and their covariance




Estimating the prior

How does this work?

3. Estimated by the fraction of training samples of class k: Pr|Y = k| = 7,

_ Huyi=kj
n

g : Fraction of training samples of class k




Prediction

* Recall: Pr(Y = k|X = x) is probability of x having label k
* LDA predicts the label with highest probability

* Bayes rule

Pr(Y =k, X=x) Pr(X=x|Y =k) Pr(Y =k)

S T T = S P =XV = D Pr(Y = D




Lecture plan

* Supervised learning
* Linear regression
* Linear classification
* Group robust regression




Spurious correlations

* Classifying water bird vs. land bird

Waterbird, Waterbird, Landbird,
Water BG Land BG Water BG

“Waterbird” ~  “Landbird”J€ “Waterbird” I




Spurious correlations

* The Celebrities dataset: strong correlation between blonde hair color
with female gender

Input

Not blonde,
Female

Blonde, Not blond,
Female Male

Blond,
Male




Linear regression with groups

* Suppose we have G groups, 1,2, ..., G, in total

* In the previous example: {water bird, water background}, {water bird, land

background}, {land bird, water background}, {land bird, land background}
* The predictor does not use group information g
* To encode this prior into the model, we could introduce a per-group loss
-~ 1
Ly(B) =— 2 £(x,y; B)
I (xy)eDy

* Instead of minimizing the average loss, we could now minimize the
maximum group loss instead

min max L
jjn me (B)




Average loss vs. maximum group loss

* [llustration in a toy example with six data points, separated into two

groups
8 o a0
T 7 o )
v 9 = TrainLoss
b @ 60 _
. A = TrainLoss .y
5 b B - 4 § 40
6 6 B 3 —
7 T B 2 20
8 8 B 1
0 - 0
0 1 2 3 4 5 6 7T 8 0 1




Training via gradient descent

* Gradient descent for group robust minimization
* Initialize
e Let VL(B;) be the gradient of the training loss at 3

* Letn be a learning rate parameter
Br < Be —n - Vgti(f,b’t)'

Where g; < arg max Z:g (Be)
g




