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Recap: Linear regression with groups
• Suppose we have 𝐺 groups, 1,2, … , 𝐺, in total
• Example: {water bird, water background}, {water bird, land background}, {land 

bird, water background}, {land bird, land background}

• To encode this prior into the model, introduce a per-group loss
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• Instead of  minimizing the average loss, minimize the maximum group 
loss instead
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Recap: Average loss vs. maximum group loss
• Illustration in a toy example with six data points, separated into two 

groups



Average loss vs. maximum group loss
• TrainLoss: 
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Recap: Gradient descent
• The algorithm is as follows:
𝑤 ← any point in the parameter space
While not converged

For each 𝑤. ∈ 𝑤

𝑤. ← 𝑤. − 𝛼 ⋅
𝜕𝐿𝑜𝑠𝑠(𝑤)
𝜕𝑤.

• 𝛼: step size, or learning rate



Chain rule
• Chain rule of  calculus: 7! 8 "
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• In the case of squared loss:
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• Exercise: Applying this to both 𝑤/ and 𝑤0?
• Next: Apply this update to the gradient descent algorithm.



Stochastic gradient descent
• Randomly selects a small number of  training examples at each step



Lecture plan
• Neural networks and deep learning
• Feedforward neural networks

Machine learningLow level High level
Supervised learning

Neural networks and deep learning



Handwritten digit recognition
• Input: handwritten digits from 0 to 9 in black and white

• MNIST: 50,000 handwritten digits for training; 5,000 for validation; 
5,000 for testing



Colored digits
• Colored MNIST: Colored digits in a black ground

• Input is represented from 3 times 28 times 28 pixels

• A naive model may simply predict the digit based on its color---a problem known as 
spurious correlation
• Link: https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py



Feedforward neural networks
• Example of  a feedforward neural network

• This simple network works well on MNIST and other handwritten digit 
recognition examples



Lecture plan
• Deep: circuits are typically organized into many layers
• Deep learning: most widely used approach for applications such as visual 

object recognition, machine translation, speech recognition, and robotics
• Today: feedforward neural networks
• Artificial neuron: Perceptron (https://en.wikipedia.org/wiki/Perceptron)
• Networks as a complex function
• Neural network architecture
• Learning algorithms



An artificial neuron
• Perceptron is a type of  artificial neuron

• Input: 𝑛 real values 𝑥C, 𝑥D, … , 𝑥E
• Weight parameters 𝑤C, 𝑤D, … , 𝑤E connecting every input to the neuron
• Output
• 𝑦 = 0, if  ∑1203 𝑤1𝑥1 + 𝑏 < 0
• 𝑦 = 1, if  ∑1203 𝑤1𝑥1 + 𝑏 ≥0



Example
• There is a new restaurant opened near Northeastern
• 𝑥0 = “Is the dinner over $30 per person?”; 𝑤0 = −30
• 𝑥4 = “Is the parking fee over $10?”; 𝑤4 = −10
• 𝑥5 = “Is the wait time over half  an hour?”; 𝑤5 = −10

• Budget b = 40
• If  𝑥0 = 1, 𝑥4 = 1, 𝑥5 = 0, then 𝑦 = 1
• If  𝑥0 = 0, 𝑥4 = 1, 𝑥5 = 1, then 𝑦 = 1
• If  𝑥0 = 1, 𝑥4 = 1, 𝑥5 = 1, then 𝑦 = 0



Vector notation
• Vector notation allows us to write the operation within an artificial 

neuron more concisely
• 𝑤, 𝑥 + 𝑏 ≥ 0 ⇒ 𝑦 = 1
• 𝑤, 𝑥 + 𝑏 < 0 ⇒ 𝑦 = 0
• 𝑤 = [𝑤0, 𝑤4, … , 𝑤3] including all weight parameters in a vector
• 𝑏 = bias: measures how easy it is to activate the neuron



Example
• Compute elementary logical functions
• Example: Use a perceptron to represent Negated AND

• If  𝑥C = 1, 𝑥D = 1, then 𝑦 = 0
• If  𝑥C = 1, 𝑥D = 0, then 𝑦 = 1
• If  𝑥C = 0, 𝑥D = 1, then 𝑦 = 1
• If  𝑥C = 0, 𝑥D = 0, then 𝑦 = 1



Sigmoid neuron
• Perceptron is susceptible to small perturbations
• If  𝑤, 𝑥 + 𝑏 ≈ 𝜖, then a small change in 𝑥 flips 𝑦: suppose 𝜖 = 0.01, but the 

perturbation reduces 𝜖 by 0.02; this flips 𝑦 from 1 to 0

• Sigmoid neurons do not suffer from this problem: It provides a nice 
approximation of  the zero-one function

𝜎 𝑧 =
1

1 + exp −𝑧
• 𝑧 = 𝑤, 𝑥 + 𝑏
• If  𝑧 ≥ 0, then y = 𝜎 𝑧 ≥ 0.5
• If  𝑧 < 0, then y = 𝜎 𝑧 < 0.5



Sigmoid neuron
• Intuition
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very large (say ≥ 10), 𝑦 is very close to one
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very small (say < −10), 𝑦 is very close to zero

• One can change the slope of  sigmoid neurons by inserting a temperature 
parameter 𝑡

𝜎 𝑧 =
1

1 + exp −𝑡 ⋅ 𝑧

• Sigmoid neurons are differentiable: can run auto-differentiation in 
PyTorch or TensorFlow



Mid-class break
• Link to the survey: 

https://forms.gle/MdPYJV72AT7tjPSG6

9/14/25



Lecture plan
• Feedforward neural networks
• Artificial neuron: Perceptron
• Networks as a complex function
• Neural network architecture
• Learning algorithms



Input-output behavior

Prediction over {0,1,2,3,4,5,6,7,8,9}

hidden layer with
four neurons

𝝈(𝒛) is the neuron’s 
activation function



Design choices
• Width: Number of  neurons in the hidden layer
• In the following example, width is four



Design choices
• Width also determines the number of  parameters in the network

• Number of  parameters: 4 times (3 + 2) plus 4 is 24
• Width times (number of  neurons in the input layer + number of  neurons in the 

output layer) + number of  hidden-layer neurons



Design choices
• Activation function 𝜎:ℝ → ℝ
• Threshold function: 𝜎 𝑧 = 0 𝑖𝑓 𝑧 ≤ 0, 1 𝑖𝑓 𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = C
CFGHI(JK)



Design choices
• Activation function 𝜎:ℝ → ℝ
• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)



Design choices
• Activation function 𝜎:ℝ → ℝ

• Tanh: 𝜎 𝑧 = L"#JC
L"#FC

, similar to sigmoid but allows for the -1 mode

• Tanh is used in transformers



Summary of  activation functions
• Threshold function: 𝜎 𝑧 = 0 𝑖𝑓 𝑧 ≤ 0; 𝜎 𝑧 = 1 𝑖𝑓 𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = C
CFGHI(JK)

• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

• Tanh: 𝜎 𝑧 = L"#JC
L"#FC

, similar to sigmoid but allows for −1



Quick question
• How shall we set the number of  output neurons?

• In the MNIST example, we want to use ten output nodes; one for each class 
from zero to nine

• For binary classification, the number of  output nodes is two

• For regression, the number of  output nodes is one



Lecture plan
• Feedforward neural networks
• Artificial neuron: Perceptron
• Networks as a complex function
• Neural network architecture
• Learning algorithms



Multi-layer neural networks
• Extending two-layer neural network to multi-layer neural network



Other types of  neural networks
• Feedforward neural networks receive the input data in no particular order

• This works well for images and other types of  data that do not require 
sequential information

• For text data, we process the data in a sequential order: transformer and 
self-attention mechanisms are ideally suited for that



Lecture plan
• Feedforward neural networks
• Artificial neuron: Perceptron
• Networks as a complex function
• Neural network architecture
• Learning algorithms



Quadratic loss
• Given a prediction 𝑢 for a data point 𝑥 with label 𝑦

𝑙 𝑥 = (𝑢 − 𝑦)D

• Suitable for regression problems with neural networks

• Apply chain rule to get the gradient ∇M𝑙 𝑓M 𝑥 , 𝑦

• Run the gradient descent algorithm



Cross-entropy loss
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝑘}, let 𝑢 be this vector

• Softmax maps 𝑢 into a probability distribution: 
GHI N$
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• Apply negative log to softmax:

ℓ 𝑢 = − log
exp(𝑢$)

∑PQCR exp(𝑢P)

• Example: for MNIST, the label space is {0,1,2, … , 9}
• Softmax output for 1: [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]



PyTorch
• 𝐿 is the label space
• 𝑦E is the label of  𝑥E
• 𝑥E,S is the softmax output probability of  𝑥E for label 𝑐

CrossEntropyLoss = Negative Log Likelihood applied to SoftMax

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html



Summary
• Classifying handwritten digits with two-layer neural nets
• Input layer takes an input, often in vector or matrix format
• Hidden layer uses an activation function (ReLU for handwritten digits)
• Output layer applies softmax to convert the hidden-layer representation to a 

probability distribution
• Use gradient descent to minimize the cross-entropy loss and train parameters

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]


