Introduction to Artificial Intelligence

Lecture 4: Neural networks I

September 15, 2025

Recap: Linear regression with groups

* Suppose we have G groups, 1,2, ..., G, in total

* Example: {water bird, water background}, {water bird, land background}, {land
bird, water background}, {land bird, land background}

* To encode this prior into the mlodel, introduce a per-group loss
L) =— > xyp)
Y (x,y)EDg

* Instead of minimizing the average loss, minimize the maximum group
loss instead
mﬁln mgax L,(B)

Recap: Average loss vs. maximum group loss

* [llustration in a toy example with six data points, separated into two

groups
8
r vy g 7
6
5
5 5 B - 4
6 6 B 3
7 7 B 2
8 8 B 1
0

Average loss vs. maximum group loss

* Trainl.oss:
%. (Ww—4)2%+(2w—8)2+ (5w —5)2+ (6w —6)2 + (Tw — 7)2 + (8w — 8)?) = g(w -4+ 29w - 1)°
* TrainlLossMax:

max %((w —4)? + (2w — 8)2),2((5w —5)2 + (6w — 6)% + (7w — 7)% + (8w — 8)2)) =

max (E (w —4)2,432 (w — 1)2) "
r Yy g = TrainLoss
60 ,
= TrainLossmax
7))
40
5 5 B S
6 6 B 0
7 7 B
8 8 B 0

Recap: Gradient descent

* The algorithm 1s as follows:
W < any point in the parameter space

While not converged

For each w; € w
dLoss(w)

aWi

Wi < W —a-

* a: step size, or learning rate

Chain rule

ag(f(x)) (f(X)) af(x)

0x
* In the case of squared loss:

dLoss(w) 6(y fW(x)) — 2y - £ (x))a()’ fw(x)) 2(y

ow; odw; w;

* Chain rule of calculus:

— fw()) o - (Vavivx +wo))

i

* Exercise: Applying this to both wy and wy?

* Next: Apply this update to the gradient descent algorithm.

Stochastic gradient descent

* Randomly selects a small number of training examples at each step

Loss

WO

Lecture plan

* Neural networks and deep learning
* Feedforward neural networks

—

Low level Machine learning High level

Supervised learning

Neural networks and deep learning

Handwritten digit recognition

* Input: handwritten digits from 0O to 9 in black and white

4(4) 1(1) 0(0)
7(7) 8(8) 1(1)
2(2) 7(1) 1(1)

* MINIST: 50,000 handwritten digits for training; 5,000 for validation;

5,000 for testing

O /]1]|DY
<||lo||7] 2]

Colored digits

* Colored MNIST: Colored digits in a black ground

* Input is represented from 3 times 28 times 28 pixels

Label: 1 Label: 0 Label: 0 Label: 1 Label: 0 Label: 1
0 0

10 20

0 1 20

0
Label: 1

0 10 20

Label: 0

0
10
20

Label: 1

0

10

20
0 10 20

* A naive model may simply predict the digit based on its color---a problem known as
spurious correlation

0 10 20 0 10 20 0 10 20

* Link: https://github.com/facebookresearch /InvariantRiskMinimization/blob/main/code/colored mnist/main.py

Feedforward neural networks

* Example of a feedforward neural network

output layer
input layer

* This simple network works well on MNIST and other handwritten digit
recognition examples

Lecture plan

* Deep: circuits are typically organized into many layets

* Deep learning: most widely used approach for applications such as visual
object recognition, machine translation, speech recognition, and robotics

* Today: feedforward neural networks
* Artificial neuron: Perceptron (https://en.wikipedia.org/wiki/Perceptron)

* Networks as a complex function
 Neural network architecture

* Learning algorithms

An artificial neuron

* Perceptron 1s a type of artificial neuron

N

—

™~
e

xn
* Input: n real values xq, X3, ..., Xp,
* Weight parameters Wy, Wy, ..., W, connecting every input to the neuron

* Output
*y=0,if Xj_,wjxj+b <0
Yy = 1>if 2}1:1ij]' +b >0

Example

* There 1s a new restaurant opened near Northeastern

* x1 = “Is the dinner over $30 per person?”’; w; = —30
* X, = “Is the parking fee over $10?”; w, = —10
* x3 = “Is the wait time over half an hour?”’; w3 = —10

* Budget b = 40
eIt x;=1,x=1,x3=0,theny =1
cIf x;=0,x =1, x3=1,theny =1
eIt x;=1,x,=1,x3=1,theny =0

Vector notation

* Vector notation allows us to write the operation within an artificial
neuron more concisely
c(Ww,x)+b=>20=>y=1
s (W,x)+bhb<0=>y=0
W = [Wq, Wy, ..., W] including all weight parameters in a vector

* b = bias: measures how easy it is to activate the neuron

Example

* Compute elementary logical functions

* Example: Use a perceptron to represent Negated AND
W= -2
0
Wz -2
A /

*Ilfx; =1,x, =1,theny =0

>

*Ilf x; =1,x, =0,theny =1
*Ifx; =0,x, =1, theny =1

*If x; =0,x, =0,theny =1

Sigmoid neuron

* Perceptron is susceptible to small perturbations
* If (W, x) + b = €, then a small change in x flips ¥: suppose € = 0.01, but the
perturbation reduces € by 0.02; this flips y from 1 to 0

* Sigmoid neurons do not suffer from this problem: It provides a nice
approximation of the zero-one function

1
o(z) = 1+ exp(—2)

cz={(w,x)+b
 If z>0,theny =0(z) = 0.5
¢ If z< 0, theny =0(z) < 0.5

Sigmoid neuron

* Intuition
* When z = (w, x) + b is very large (say = 10), y is very close to one
* When z = (w, x) + b is very small (say < —10), y is very close to zero

* One can change the slope of sigmoid neurons by inserting a temperature
parameter

1

0(z) = 1+ exp(—t - z)

* Sigmoid neurons are differentiable: can run auto-differentiation in
PyTorch or TensorFlow

Mid-class break

* Link to the survey:

https://forms.gle/ MdPYJV72AT7PSGO6

Lecture plan

* Feedforward neural networks
* Artificial neuron: Perceptron
* Networks as a complex function
* Neural network architecture
* Learning algorithms

Input-output behavior

0(z) is the neuron’s
activation function

Prediction over {0,1,2,3,4,5,6,7,8,9}

ap—

output layer
input layer

hidden layer with
four neurons

Design choices

* Width: Number of neurons in the hidden layer

* In the following example, width is four

output layer
input layer

Design choices

* Width also determines the number of parameters in the network

output layer
input layer
* Number of parameters: 4 times (3 + 2) plus 4 1s 24

* Width times (number of neurons in the input layer + number of neurons in the
output layer) + number of hidden-layer neurons

Design choices

e Activation function g: R —» R

* Threshold function: 6(z) = 0if z<0,1if z> 0
1
1+exp(—z)

* Sigmoid function: d(z) =

T)\V‘eslmlc\ Csamosd

Design choices

e Activation function o: IR = R

* Linear function: 0(z) = z

* Rectified linear units (Rel.U): 0(z) = max(z, 0)

Linear

35’

Rell)

/]

45°

Design choices

e Activation function o: IR = R

2Z _
* Tanh: 0(2) = Z 22:, similar to sigmoid but allows for the -1 mode
Tanh
A
|
y

Summary of activation functions

* Threshold function: 6(z) =0if z< 0;0(z) =1ifz>0
1
1+exp(—2z)

* Sigmoid function: d(z) =

* Linear function: 0(z) = z
* Rectified linear units (RelLU): 0(z) = max(z, 0)

e?Z_1

e?Zz+1

* Tanh: 0(z) =

, similar to sigmoid but allows for —1

Quick question

* How shall we set the number of output neurons?

* In the MNIST example, we want to use ten output nodes; one for each class
from zero to nine

* For binary classification, the number of output nodes is two

* For regression, the number of output nodes is one

Lecture plan

* Feedforward neural networks
* Artificial neuron: Perceptron
* Networks as a complex function

e Neural network architecture
* Learning algorithms

Multi-layer neural networks

* Extending two-layer neural network to multi-layer neural network

input layer

hidden layer 1 hidden layer 2

Other types of neural networks

* Feedforward neural networks receive the input data in no particular order

* This works well for images and other types of data that do not require
sequential information

* For text data, we process the data in a sequential order: transformer and
self-attention mechanisms are ideally suited for that

Lecture plan

* Feedforward neural networks
* Artificial neuron: Perceptron
* Networks as a complex function

 Neural network architecture
* Learning algorithms

Quadratic loss

* Given a prediction U for a data point x with label y
[(x) = (u=y)*

* Suitable for regression problems with neural networks
* Apply chain rule to get the gradient V,,, [(f,, (x), V)

* Run the gradient descent algorithm

Cross-entropy loss

* Given a prediction for every label y € {1,2, ..., k}, let u be this vector

* Softmax maps U into a probability distribution: > {‘Zz(;ﬁh)

* Apply negative log to softmax:
exp(u,)
f(u) = —log

i'(=1 exp(u;)

* Example: for MNIST, the label space is {0,1,2, ..., 9}
+ Softmax output for 1: [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Py Torch

* L is the label space
* y, 1s the label of X,

* Xp ¢ 1s the softmax output probability of X, for label ¢

CrossEntropylL.oss = Negative Log Likelthood applied to SoftMax

CLASS torch.nn.CrossEntropylLoss(weight=None, size_average=None, ignore_index=- 100,
reduce=None, reduction="mean’, l1abel_smoothing=6.8) [SOURCE]

Ua,y) =L={ly,...,Ix}", l,=—w,, log g"p("’"'y") . 1{y, # ignore_index}
Ec=l exp (xn,c)

https: torch.oro/docs/stable/generated /torch.nn.CrossEntropvl.oss.html

Summary

* Classifying handwritten digits with two-layer neural nets
* Input layer takes an input, often in vector or matrix format
* Hidden layer uses an activation function (ReLU for handwritten digits)

* Output layer applies softmax to convert the hidden-layer representation to a

probability distribution

* Use gradient descent to minimize the cross-entropy loss and train parameters

Prediction over {0,1,2,3,4,5,6,7,8,9}

12
T T T
ST I
-

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

output layer
input layer

