Introduction to Artificial Intelligence

Lecture 4: Neural networks I

September 15, 2025

Recap: Linear regression with groups

- Suppose we have G groups, 1, 2, ..., G, in total
 - Example: {water bird, water background}, {water bird, land background}, {land bird, water background}, {land bird, land background}
- To encode this prior into the model, introduce a per-group loss

$$\widehat{L}_g(\beta) = \frac{1}{n_g} \sum_{(x,y) \in D_g} \ell(x,y;\beta)$$

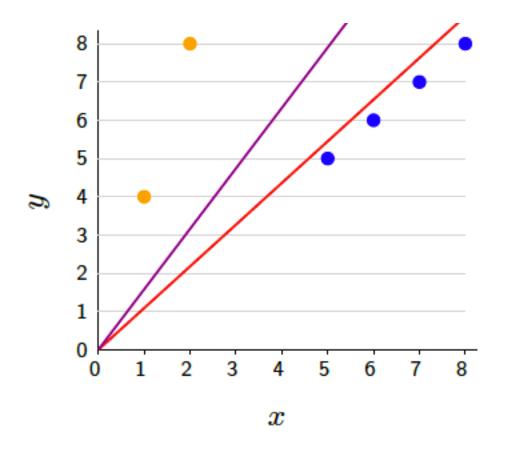
• Instead of minimizing the average loss, minimize the maximum group loss instead

$$\min_{\beta} \max_{g} \hat{L}_{g}(\beta)$$

Recap: Average loss vs. maximum group loss

• Illustration in a toy example with six data points, separated into two groups

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{g}
1	4	Α
2	8	Α
5	5	В
6	6	В
7	7	В
8	8	В
L		



Average loss vs. maximum group loss

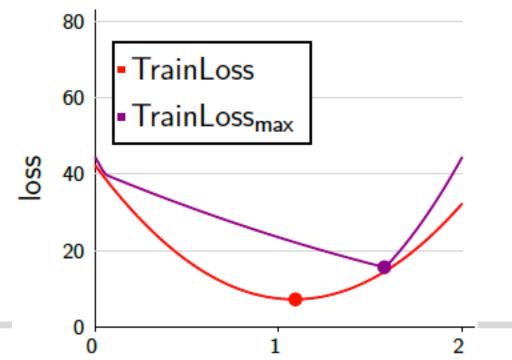
• TrainLoss:

$$\frac{1}{6} \cdot \left((w-4)^2 + (2w-8)^2 + (5w-5)^2 + (6w-6)^2 + (7w-7)^2 + (8w-8)^2 \right) = \frac{5}{6} (w-4)^2 + 29(w-1)^2$$

• TrainLossMax:

$$\max\left(\frac{1}{2}\left((w-4)^2+(2w-8)^2\right),\frac{1}{4}\left((5w-5)^2+(6w-6)^2+(7w-7)^2+(8w-8)^2\right)\right) = \max\left(\frac{5}{2}(w-4)^2,43\frac{1}{2}(w-1)^2\right)$$

x y g
1 4 A
2 8 A
5 5 B
6 6 B
7 7 B
8 8 B



Recap: Gradient descent

• The algorithm is as follows:

 $w \leftarrow$ any point in the parameter space

While not converged

For each $w_i \in w$

$$w_i \leftarrow w_i - \alpha \cdot \frac{\partial Loss(w)}{\partial w_i}$$

• α : step size, or learning rate

Chain rule

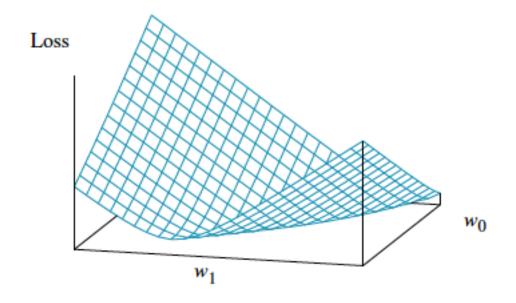
- Chain rule of calculus: $\frac{\partial g(f(x))}{\partial x} = g'(f(x)) \frac{\partial f(x)}{\partial x}$
- In the case of squared loss:

$$\frac{\partial Loss(w)}{\partial w_i} = \frac{\partial \left(y - f_w(x)\right)^2}{\partial w_i} = 2\left(y - f_w(x)\right) \frac{\partial \left(y - f_w(x)\right)}{\partial w_i} = 2\left(y - f_w(x)\right) \frac{\partial \left(y - (w_1x + w_0)\right)}{\partial w_i}$$

- Exercise: Applying this to both w_0 and w_1 ?
- Next: Apply this update to the gradient descent algorithm.

Stochastic gradient descent

• Randomly selects a small number of training examples at each step



Lecture plan

- Neural networks and deep learning
 - Feedforward neural networks

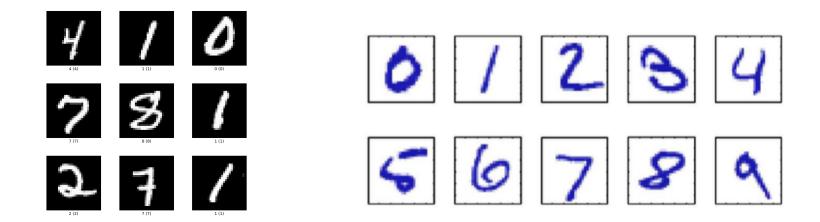
Low level Machine learning

Supervised learning

Neural networks and deep learning

Handwritten digit recognition

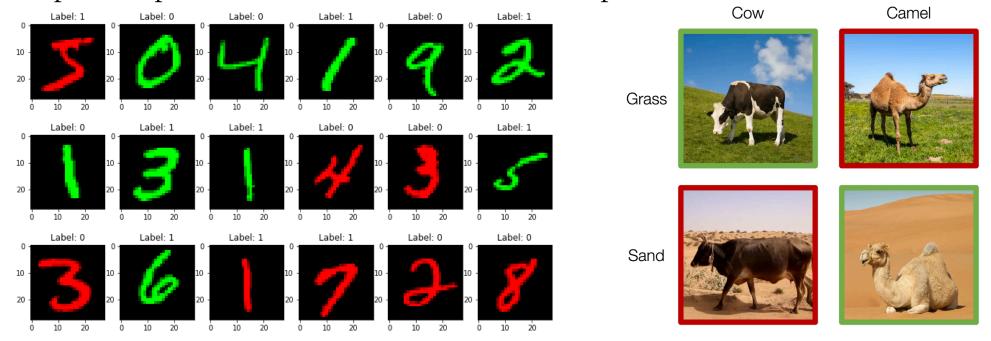
• Input: handwritten digits from 0 to 9 in black and white



• MNIST: 50,000 handwritten digits for training; 5,000 for validation; 5,000 for testing

Colored digits

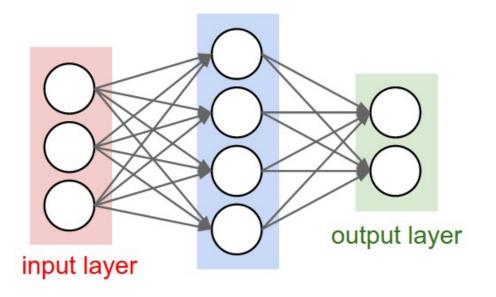
- Colored MNIST: Colored digits in a black ground
 - Input is represented from 3 times 28 times 28 pixels



- A naive model may simply predict the digit based on its color---a problem known as spurious correlation
- Link: https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py

Feedforward neural networks

• Example of a feedforward neural network



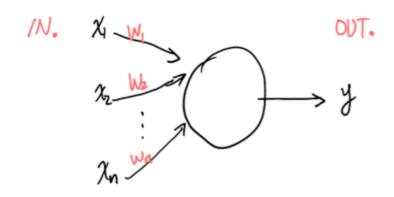
• This simple network works well on MNIST and other handwritten digit recognition examples

Lecture plan

- Deep: circuits are typically organized into many layers
- **Deep learning:** most widely used approach for applications such as visual object recognition, machine translation, speech recognition, and robotics
- Today: feedforward neural networks
 - Artificial neuron: Perceptron (https://en.wikipedia.org/wiki/Perceptron)
 - Networks as a complex function
 - Neural network architecture
 - Learning algorithms

An artificial neuron

• Perceptron is a type of artificial neuron



- Input: n real values $x_1, x_2, ..., x_n$
- Weight parameters $w_1, w_2, ..., w_n$ connecting every input to the neuron
- Output
 - y = 0, if $\sum_{j=1}^{n} w_j x_j + b < 0$
 - y = 1, if $\sum_{j=1}^{n} w_j x_j + b \ge 0$

Example

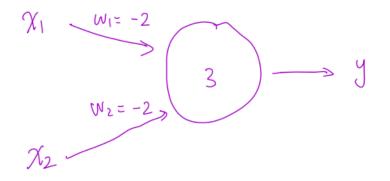
- There is a new restaurant opened near Northeastern
 - x_1 = "Is the dinner over \$30 per person?"; $w_1 = -30$
 - x_2 = "Is the parking fee over \$10?"; $w_2 = -10$
 - x_3 = "Is the wait time over half an hour?"; $w_3 = -10$
- Budget b = 40
 - If $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, then y = 1
 - If $x_1 = 0$, $x_2 = 1$, $x_3 = 1$, then y = 1
 - If $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, then y = 0

Vector notation

- Vector notation allows us to write the operation within an artificial neuron more concisely
 - $\langle w, x \rangle + b \ge 0 \Rightarrow y = 1$
 - $\langle w, x \rangle + b < 0 \Rightarrow y = 0$
 - $w = [w_1, w_2, ..., w_n]$ including all weight parameters in a vector
 - b = bias: measures how easy it is to activate the neuron

Example

- Compute elementary logical functions
- Example: Use a perceptron to represent Negated AND



- If $x_1 = 1$, $x_2 = 1$, then y = 0
- If $x_1 = 1$, $x_2 = 0$, then y = 1
- If $x_1 = 0$, $x_2 = 1$, then y = 1
- If $x_1 = 0$, $x_2 = 0$, then y = 1

Sigmoid neuron

- Perceptron is susceptible to small perturbations
 - If $\langle w, x \rangle + b \approx \epsilon$, then a small change in x flips y: suppose $\epsilon = 0.01$, but the perturbation reduces ϵ by 0.02; this flips y from 1 to 0
- Sigmoid neurons do not suffer from this problem: It provides a nice approximation of the zero-one function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- $z = \langle w, x \rangle + b$
 - If $z \ge 0$, then $y = \sigma(z) \ge 0.5$
 - If z < 0, then $y = \sigma(z) < 0.5$

Sigmoid neuron

• Intuition

- When $z = \langle w, x \rangle + b$ is very large (say ≥ 10), y is very close to one
- When $z = \langle w, x \rangle + b$ is very small (say < -10), y is very close to zero
- \bullet One can change the slope of sigmoid neurons by inserting a temperature parameter t

$$\sigma(z) = \frac{1}{1 + \exp(-t \cdot z)}$$

• Sigmoid neurons are differentiable: can run auto-differentiation in PyTorch or TensorFlow

Mid-class break

• Link to the survey:

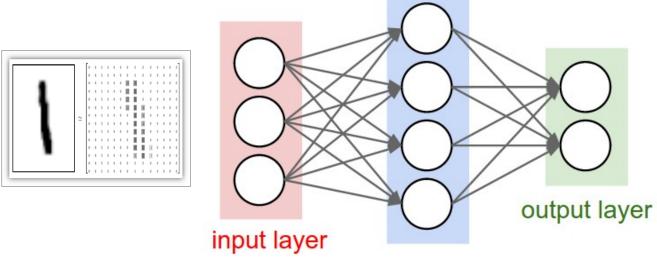
https://forms.gle/MdPYJV72AT7tjPSG6

Lecture plan

- Feedforward neural networks
 - Artificial neuron: Perceptron
 - Networks as a complex function
 - Neural network architecture
 - Learning algorithms

Input-output behavior

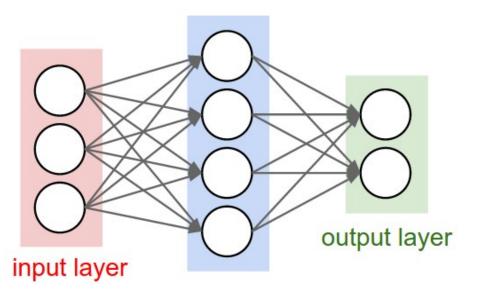
$\sigma(z)$ is the neuron's activation function



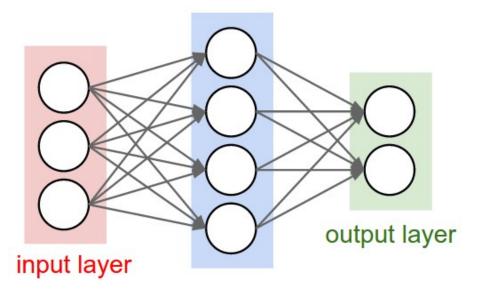
Prediction over {0,1,2,3,4,5,6,7,8,9}

hidden layer with four neurons

- Width: Number of neurons in the hidden layer
- In the following example, width is four

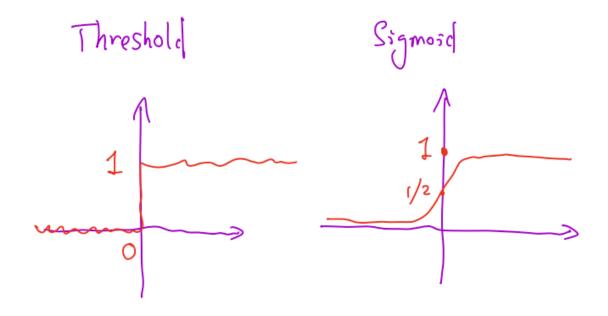


• Width also determines the number of parameters in the network

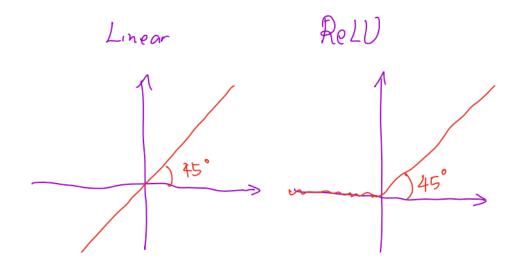


- Number of parameters: 4 times (3 + 2) plus 4 is 24
 - Width times (number of neurons in the input layer + number of neurons in the output layer) + number of hidden-layer neurons

- Activation function $\sigma: \mathbb{R} \to \mathbb{R}$
- Threshold function: $\sigma(z) = 0$ if $z \le 0$, 1 if z > 0
- Sigmoid function: $\sigma(z) = \frac{1}{1 + \exp(-z)}$



- Activation function $\sigma: \mathbb{R} \to \mathbb{R}$
- Linear function: $\sigma(z) = z$
- Rectified linear units (ReLU): $\sigma(z) = \max(z, 0)$



• Activation function $\sigma: \mathbb{R} \to \mathbb{R}$

• Tanh: $\sigma(z) = \frac{e^{2z}-1}{e^{2z}+1}$, similar to sigmoid but allows for the -1 mode

• Tanh is used in transformers

Summary of activation functions

- Threshold function: $\sigma(z) = 0$ if $z \le 0$; $\sigma(z) = 1$ if z > 0
- Sigmoid function: $\sigma(z) = \frac{1}{1 + \exp(-z)}$
- Linear function: $\sigma(z) = z$
- Rectified linear units (ReLU): $\sigma(z) = \max(z, 0)$
- Tanh: $\sigma(z) = \frac{e^{2z}-1}{e^{2z}+1}$, similar to sigmoid but allows for -1

Quick question

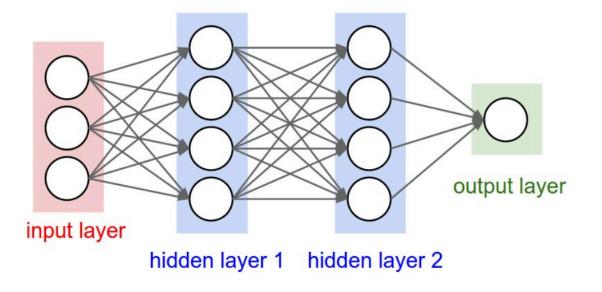
- How shall we set the number of output neurons?
 - In the MNIST example, we want to use ten output nodes; one for each class from zero to nine
 - For binary classification, the number of output nodes is two
 - For regression, the number of output nodes is one

Lecture plan

- Feedforward neural networks
 - Artificial neuron: Perceptron
 - Networks as a complex function
 - Neural network architecture
 - Learning algorithms

Multi-layer neural networks

• Extending two-layer neural network to multi-layer neural network



Other types of neural networks

- Feedforward neural networks receive the input data in no particular order
- This works well for images and other types of data that do not require sequential information
- For text data, we process the data in a sequential order: transformer and self-attention mechanisms are ideally suited for that

Lecture plan

Feedforward neural networks

- Artificial neuron: Perceptron
- Networks as a complex function
- Neural network architecture
- Learning algorithms

Quadratic loss

• Given a prediction u for a data point x with label y

$$l(x) = (u - y)^2$$

• Suitable for regression problems with neural networks

• Apply chain rule to get the gradient $\nabla_w l(f_w(x), y)$

• Run the gradient descent algorithm

Cross-entropy loss

- Given a prediction for every label $y \in \{1, 2, ..., k\}$, let u be this vector
- Softmax maps u into a probability distribution: $\frac{\exp(u_y)}{\sum_{i=1}^k \exp(u_i)}$
- Apply negative log to softmax:

$$\ell(u) = -\log \frac{\exp(u_y)}{\sum_{i=1}^k \exp(u_i)}$$

- Example: for MNIST, the label space is $\{0,1,2,...,9\}$
 - Softmax output for 1: [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

PyTorch

- *L* is the label space
- y_n is the label of x_n
- $x_{n,c}$ is the softmax output probability of x_n for label c

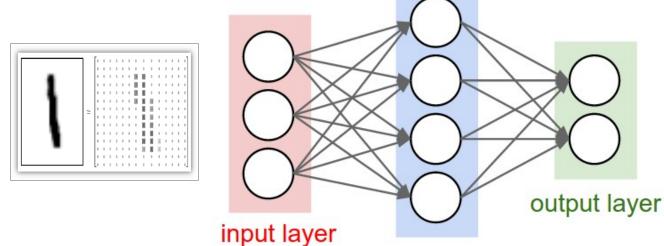
CrossEntropyLoss = Negative Log Likelihood applied to SoftMax

CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) [SOURCE]

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = -w_{y_n}\lograc{\exp(x_{n,y_n})}{\sum_{c=1}^C\exp(x_{n,c})}\cdot 1\{y_n
eq ext{ignore_index}\}$$

Summary

- Classifying handwritten digits with two-layer neural nets
 - Input layer takes an input, often in vector or matrix format
 - Hidden layer uses an activation function (ReLU for handwritten digits)
 - Output layer applies softmax to convert the hidden-layer representation to a probability distribution
 - Use gradient descent to minimize the cross-entropy loss and train parameters



Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, **0.9**, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

