
Introduction to Artificial Intelligence

Lecture 4: Neural networks I

September 15, 2025

Recap: Linear regression with groups
• Suppose we have 𝐺 groups, 1,2, … , 𝐺, in total
• Example: {water bird, water background}, {water bird, land background}, {land

bird, water background}, {land bird, land background}

• To encode this prior into the model, introduce a per-group loss
&𝐿! 𝛽 =

1
𝑛!

+
",$ ∈&!

ℓ 𝑥, 𝑦; 𝛽

• Instead of minimizing the average loss, minimize the maximum group
loss instead

min
'
max
!

&𝐿! 𝛽

Recap: Average loss vs. maximum group loss
• Illustration in a toy example with six data points, separated into two

groups

Average loss vs. maximum group loss
• TrainLoss:
1
6 ⋅ 𝑤 − 4 ! + 2𝑤 − 8 ! + 5𝑤 − 5 ! + 6𝑤 − 6 ! + 7𝑤 − 7 ! + 8𝑤 − 8 ! =

5
6 𝑤 − 4 ! + 29 𝑤 − 1 !

• TrainLossMax:
max !

"
𝑤 − 4 " + 2𝑤 − 8 " , !

#
5𝑤 − 5 " + 6𝑤 − 6 " + 7𝑤 − 7 " + 8𝑤 − 8 " =

max $
"
𝑤 − 4 ", 43 !

"
𝑤 − 1 "

Recap: Gradient descent
• The algorithm is as follows:
𝑤 ← any point in the parameter space
While not converged

For each 𝑤. ∈ 𝑤

𝑤. ← 𝑤. − 𝛼 ⋅
𝜕𝐿𝑜𝑠𝑠(𝑤)
𝜕𝑤.

• 𝛼: step size, or learning rate

Chain rule
• Chain rule of calculus: 7! 8 "

7"
= 𝑔9 𝑓 𝑥 78(")

7"
• In the case of squared loss:

𝜕𝐿𝑜𝑠𝑠(𝑤)
𝜕𝑤%

=
𝜕 𝑦 − 𝑓& 𝑥

"

𝜕𝑤%
= 2 𝑦 − 𝑓& 𝑥

𝜕 𝑦 − 𝑓& 𝑥
𝜕𝑤%

= 2 𝑦 − 𝑓& 𝑥
𝜕 𝑦 − 𝑤!𝑥 + 𝑤'

𝜕𝑤%

• Exercise: Applying this to both 𝑤/ and 𝑤0?
• Next: Apply this update to the gradient descent algorithm.

Stochastic gradient descent
• Randomly selects a small number of training examples at each step

Lecture plan
• Neural networks and deep learning
• Feedforward neural networks

Machine learningLow level High level
Supervised learning

Neural networks and deep learning

Handwritten digit recognition
• Input: handwritten digits from 0 to 9 in black and white

• MNIST: 50,000 handwritten digits for training; 5,000 for validation;
5,000 for testing

Colored digits
• Colored MNIST: Colored digits in a black ground

• Input is represented from 3 times 28 times 28 pixels

• A naive model may simply predict the digit based on its color---a problem known as
spurious correlation
• Link: https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py

Feedforward neural networks
• Example of a feedforward neural network

• This simple network works well on MNIST and other handwritten digit
recognition examples

Lecture plan
• Deep: circuits are typically organized into many layers
• Deep learning: most widely used approach for applications such as visual

object recognition, machine translation, speech recognition, and robotics
• Today: feedforward neural networks
• Artificial neuron: Perceptron (https://en.wikipedia.org/wiki/Perceptron)
• Networks as a complex function
• Neural network architecture
• Learning algorithms

An artificial neuron
• Perceptron is a type of artificial neuron

• Input: 𝑛 real values 𝑥C, 𝑥D, … , 𝑥E
• Weight parameters 𝑤C, 𝑤D, … , 𝑤E connecting every input to the neuron
• Output
• 𝑦 = 0, if ∑1203 𝑤1𝑥1 + 𝑏 < 0
• 𝑦 = 1, if ∑1203 𝑤1𝑥1 + 𝑏 ≥0

Example
• There is a new restaurant opened near Northeastern
• 𝑥0 = “Is the dinner over $30 per person?”; 𝑤0 = −30
• 𝑥4 = “Is the parking fee over $10?”; 𝑤4 = −10
• 𝑥5 = “Is the wait time over half an hour?”; 𝑤5 = −10

• Budget b = 40
• If 𝑥0 = 1, 𝑥4 = 1, 𝑥5 = 0, then 𝑦 = 1
• If 𝑥0 = 0, 𝑥4 = 1, 𝑥5 = 1, then 𝑦 = 1
• If 𝑥0 = 1, 𝑥4 = 1, 𝑥5 = 1, then 𝑦 = 0

Vector notation
• Vector notation allows us to write the operation within an artificial

neuron more concisely
• 𝑤, 𝑥 + 𝑏 ≥ 0 ⇒ 𝑦 = 1
• 𝑤, 𝑥 + 𝑏 < 0 ⇒ 𝑦 = 0
• 𝑤 = [𝑤0, 𝑤4, … , 𝑤3] including all weight parameters in a vector
• 𝑏 = bias: measures how easy it is to activate the neuron

Example
• Compute elementary logical functions
• Example: Use a perceptron to represent Negated AND

• If 𝑥C = 1, 𝑥D = 1, then 𝑦 = 0
• If 𝑥C = 1, 𝑥D = 0, then 𝑦 = 1
• If 𝑥C = 0, 𝑥D = 1, then 𝑦 = 1
• If 𝑥C = 0, 𝑥D = 0, then 𝑦 = 1

Sigmoid neuron
• Perceptron is susceptible to small perturbations
• If 𝑤, 𝑥 + 𝑏 ≈ 𝜖, then a small change in 𝑥 flips 𝑦: suppose 𝜖 = 0.01, but the

perturbation reduces 𝜖 by 0.02; this flips 𝑦 from 1 to 0

• Sigmoid neurons do not suffer from this problem: It provides a nice
approximation of the zero-one function

𝜎 𝑧 =
1

1 + exp −𝑧
• 𝑧 = 𝑤, 𝑥 + 𝑏
• If 𝑧 ≥ 0, then y = 𝜎 𝑧 ≥ 0.5
• If 𝑧 < 0, then y = 𝜎 𝑧 < 0.5

Sigmoid neuron
• Intuition
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very large (say ≥ 10), 𝑦 is very close to one
• When 𝑧 = 𝑤, 𝑥 + 𝑏 is very small (say < −10), 𝑦 is very close to zero

• One can change the slope of sigmoid neurons by inserting a temperature
parameter 𝑡

𝜎 𝑧 =
1

1 + exp −𝑡 ⋅ 𝑧

• Sigmoid neurons are differentiable: can run auto-differentiation in
PyTorch or TensorFlow

Mid-class break
• Link to the survey:

https://forms.gle/MdPYJV72AT7tjPSG6

9/14/25

Lecture plan
• Feedforward neural networks
• Artificial neuron: Perceptron
• Networks as a complex function
• Neural network architecture
• Learning algorithms

Input-output behavior

Prediction over {0,1,2,3,4,5,6,7,8,9}

hidden layer with
four neurons

𝝈(𝒛) is the neuron’s
activation function

Design choices
• Width: Number of neurons in the hidden layer
• In the following example, width is four

Design choices
• Width also determines the number of parameters in the network

• Number of parameters: 4 times (3 + 2) plus 4 is 24
• Width times (number of neurons in the input layer + number of neurons in the

output layer) + number of hidden-layer neurons

Design choices
• Activation function 𝜎:ℝ → ℝ
• Threshold function: 𝜎 𝑧 = 0 𝑖𝑓 𝑧 ≤ 0, 1 𝑖𝑓 𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = C
CFGHI(JK)

Design choices
• Activation function 𝜎:ℝ → ℝ
• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

Design choices
• Activation function 𝜎:ℝ → ℝ

• Tanh: 𝜎 𝑧 = L"#JC
L"#FC

, similar to sigmoid but allows for the -1 mode

• Tanh is used in transformers

Summary of activation functions
• Threshold function: 𝜎 𝑧 = 0 𝑖𝑓 𝑧 ≤ 0; 𝜎 𝑧 = 1 𝑖𝑓 𝑧 > 0

• Sigmoid function: 𝜎 𝑧 = C
CFGHI(JK)

• Linear function: 𝜎 𝑧 = 𝑧
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

• Tanh: 𝜎 𝑧 = L"#JC
L"#FC

, similar to sigmoid but allows for −1

Quick question
• How shall we set the number of output neurons?

• In the MNIST example, we want to use ten output nodes; one for each class
from zero to nine

• For binary classification, the number of output nodes is two

• For regression, the number of output nodes is one

Lecture plan
• Feedforward neural networks
• Artificial neuron: Perceptron
• Networks as a complex function
• Neural network architecture
• Learning algorithms

Multi-layer neural networks
• Extending two-layer neural network to multi-layer neural network

Other types of neural networks
• Feedforward neural networks receive the input data in no particular order

• This works well for images and other types of data that do not require
sequential information

• For text data, we process the data in a sequential order: transformer and
self-attention mechanisms are ideally suited for that

Lecture plan
• Feedforward neural networks
• Artificial neuron: Perceptron
• Networks as a complex function
• Neural network architecture
• Learning algorithms

Quadratic loss
• Given a prediction 𝑢 for a data point 𝑥 with label 𝑦

𝑙 𝑥 = (𝑢 − 𝑦)D

• Suitable for regression problems with neural networks

• Apply chain rule to get the gradient ∇M𝑙 𝑓M 𝑥 , 𝑦

• Run the gradient descent algorithm

Cross-entropy loss
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝑘}, let 𝑢 be this vector

• Softmax maps 𝑢 into a probability distribution:
GHI N$

∑%&'
(GHI N%

• Apply negative log to softmax:

ℓ 𝑢 = − log
exp(𝑢$)

∑PQCR exp(𝑢P)

• Example: for MNIST, the label space is {0,1,2, … , 9}
• Softmax output for 1: [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

PyTorch
• 𝐿 is the label space
• 𝑦E is the label of 𝑥E
• 𝑥E,S is the softmax output probability of 𝑥E for label 𝑐

CrossEntropyLoss = Negative Log Likelihood applied to SoftMax

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Summary
• Classifying handwritten digits with two-layer neural nets
• Input layer takes an input, often in vector or matrix format
• Hidden layer uses an activation function (ReLU for handwritten digits)
• Output layer applies softmax to convert the hidden-layer representation to a

probability distribution
• Use gradient descent to minimize the cross-entropy loss and train parameters

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

