#### Introduction to Artificial Intelligence

Lecture 5: Neural networks II

September 18, 2025



# Recap: What are neural networks?

| Input (A)         | Output (B)             | Application         |
|-------------------|------------------------|---------------------|
| Email             | Spam? (0/1)            | Spam filtering      |
| Audio             | Text transcripts       | Speech recognition  |
| English           | Chinese                | Machine translation |
| Ad, user info     | Click? (0/1)           | Online advertising  |
| Image, radar info | Position of other cars | Self-driving cars   |
| Image of phone    | Defect? (0/1)          | Visual inspection   |
| Sequence of words | The next word          | Chatbot             |



# How large language models (LLMs) work

• LLMs are built by using supervised learning (A -> B) to repeatedly predict the next word

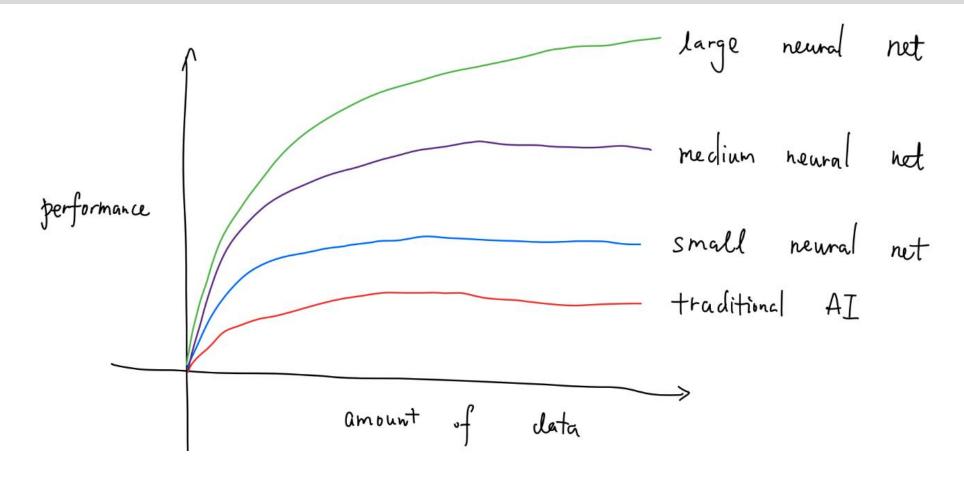
CS4100 is a class about artificial intelligence

| Input (A)                           | Output (B)   |
|-------------------------------------|--------------|
| CS4100                              | is           |
| CS 4100 is                          | a            |
| CS 4100 is a                        | class        |
| CS 4100 is a class                  | about        |
| CS 4100 is a class about            | artificial   |
| CS 4100 is a class about artificial | intelligence |

• When we train a very large AI system on a lot of data (hundreds of billions of words), we get a large language model like ChatGPT



#### From neural networks to AI



• It helps to have more data, plus more compute



# Example of a table of data (dataset)

| Size of house (square feet) | # of bedrooms | Price (1000\$) |
|-----------------------------|---------------|----------------|
| 523                         | 1             | 305            |
| 645                         | 1             | 384            |
| 726                         | 2             | 540            |
| 1088                        | 2             | 653            |
| 1                           |               | 1              |

• Regression models: map A to B

• Neural networks

| image | label   | В |
|-------|---------|---|
| ( L   | cat     |   |
| Ø     | not cat |   |
|       | cat     |   |
| 3 3   | not cat |   |



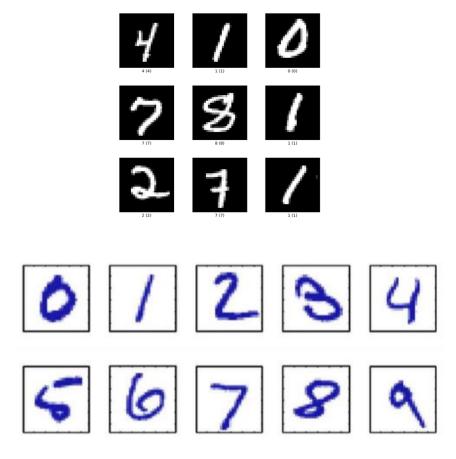
## Lecture plan

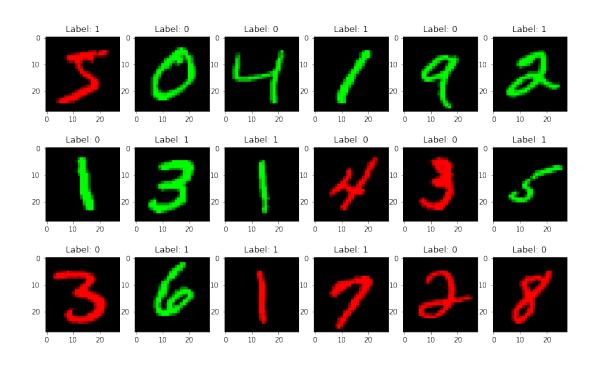
- Introduction to convolutional neural networks
  - What is a convolutional layer?



# Application I: Handwritten digit classification

• Classifying handwritten digits





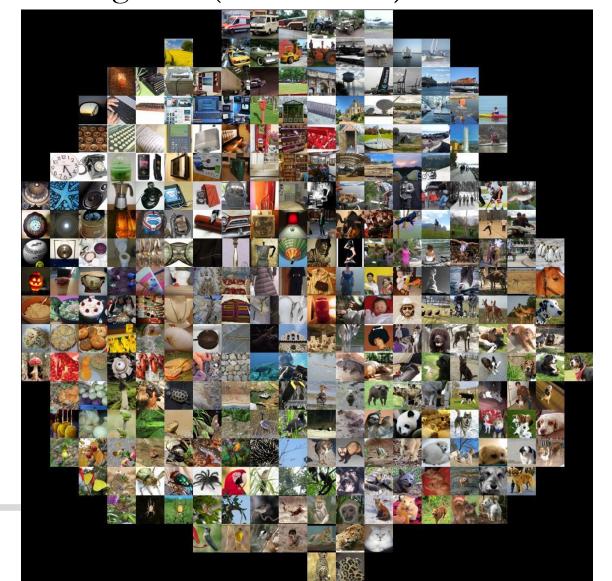


# Application II: Object recognition

• CIFAR-10

airplane automobile bird cat deer dog frog horse ship truck

• ImageNet (1000 classes)





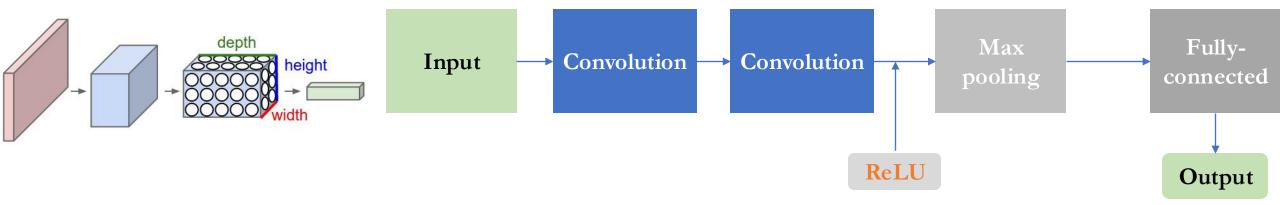
#### Why not using feedforward neural networks?

- Feedforward neural networks use fully-connected layers to transform the input
- Fully-connected layers do not scale to large images
  - A black-and-white digit in MNIST has size 28 by 28. A colored image in CIFAR-10 has size 32 by 32 by 3
  - For MNIST, a fully-connected neuron needs  $28 \times 28 = 784$  weights
  - For CIFAR-10, a fully-connected neuron needs  $32 \times 32 \times 3 = 3,072$  weights
  - Processing larger images requires more parameters



#### What is a convolutional neural network?

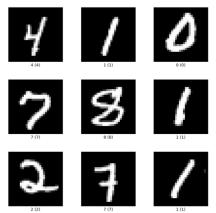
- In convolutional neural networks (CNN), a neuron only connects to a small local region of the image
  - Example: A colored (2D) image is specified by width, height, and depth

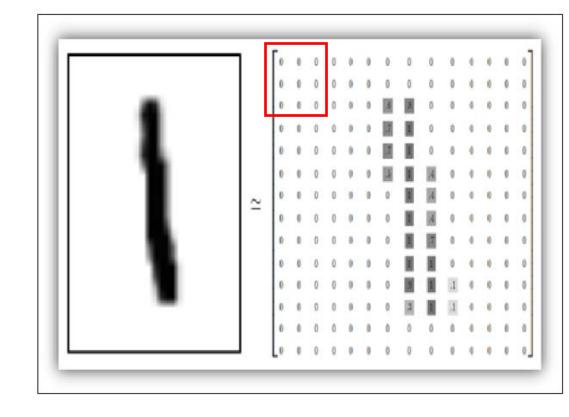


- A CNN involves a combination of the following types of layers
  - Input layer: Raw pixel values of the image
  - Convolution layer: Combine pixel values in a local region
  - Pooling layer: Down sample pixels
  - Fully-connected layers: Classification/prediction



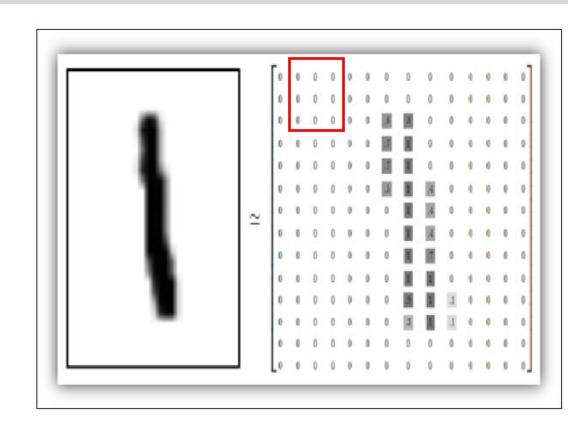
- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 0
  - First row, first patch





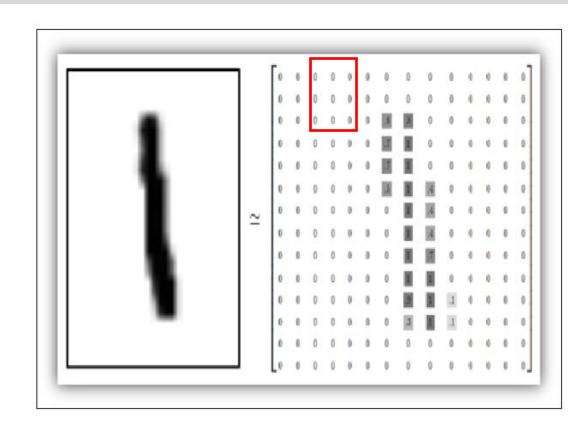


- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 0
  - First row, second patch



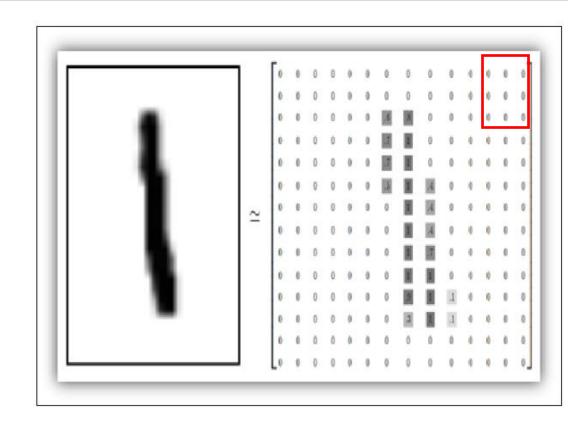


- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 0
  - First row, third patch



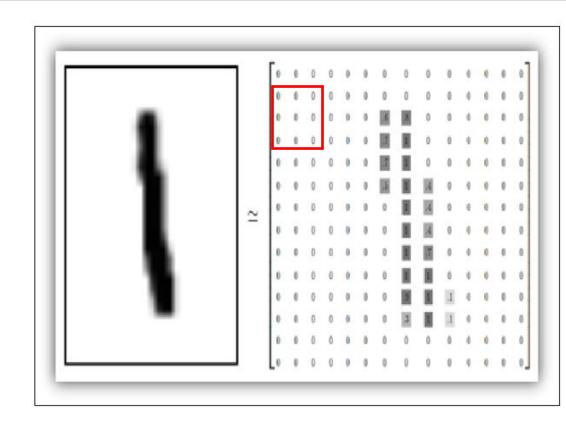


- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 0
  - First row, last patch



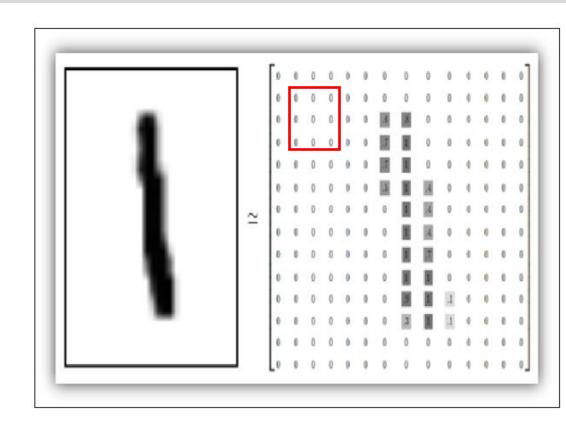


- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 1
  - Second row, first patch



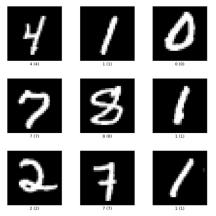


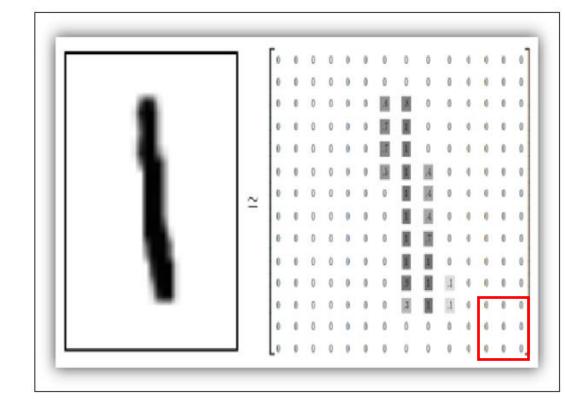
- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 0
  - Second row, second patch





- Example (MNIST)
  - **Input** size: 28 by 28
  - Convolutional layer:
    - Filter size: (3, 3)
    - Stride: (1, 1)
    - Zero padding size: 0
  - Last row, last patch





• Question: What is the final output size?



## Convolution layer

• Filter (depth times width): Larger filter captures coarser spatial patterns, while smaller filters capture finer spatial patterns

• Stride (depth times width): How often do we slide the filter? For example, when the stride is 1, we slide the filter one pixel at a time

• Zero padding: Pad the input with zeros around the border

• MNIST example: filter size (3, 3), stride size (1, 1), zero padding size 0



## Lecture plan

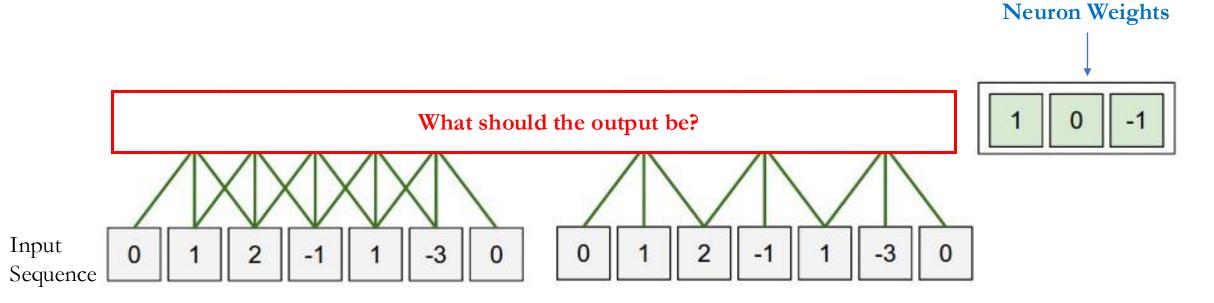
- Introduction to convolutional neural networks
  - What is a convolutional layer?
  - Illustrative examples



#### Illustration

• Input dimension is one, filter size is (3), stride is (1)

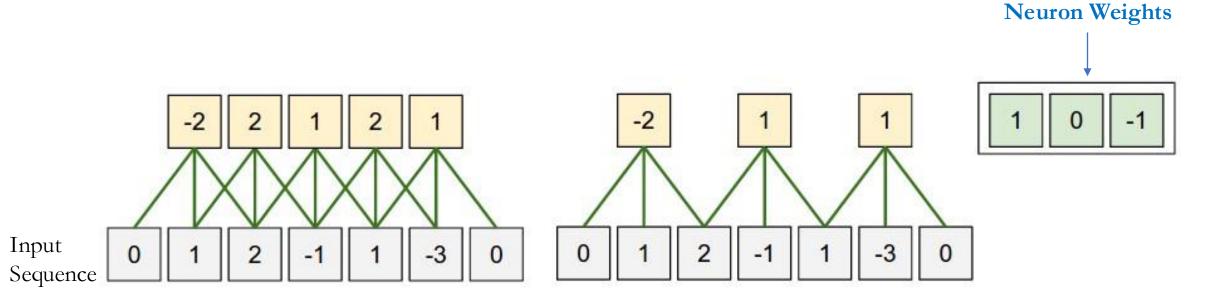
• Multiply the input with the neuron weights pixel-by-pixel





#### Illustration

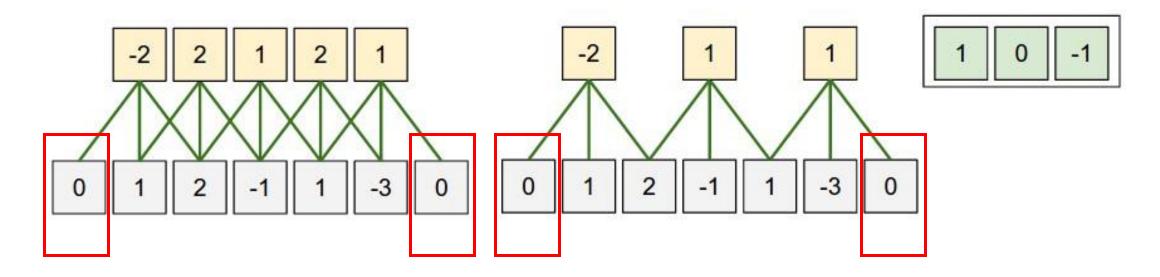
- Illustration of spatial arrangement with a simplified example
  - Filter size is (3)
  - Stride is (1)





# Explaining zero padding size

• This example uses a single zero padding on both left and right



• We can use zero padding to adjust the output dimension, e.g., in sentence classification, use zero padding for fixed (max) length sentences



#### Stride size

- Filter size and stride size must satisfy that: (image width filter size) should be divisible by (stride size); Otherwise, add zero padding
- Illustrating the convolution operation for an image of size (32, 32, 3)

A neuron only connects to a small "local region"



# Summary

- Input: A 3D image of size  $(W_1, H_1, D_1)$
- Convolution layer:
  - Number of filters *K*
  - Filter size F ( $F \times F \times D_1$ )
  - Stride size *S*
  - Zero padding size *P*
- Produces an output of size  $(W_2, H_2, D_2)$ . What is it?

• 
$$W_2 = \frac{W_1 - F + 2P}{S} + 1$$

• 
$$H_2 = \frac{H_1 - F + 2P}{S} + 1$$

• 
$$D_2 = K$$

• With parameter sharing,  $F \times F \times D_1$  weights per filter, for a total of  $(F^2 \times D_1) \times K$  weights



#### Lecture plan

- Introduction to convolutional neural networks
  - What is a convolutional layer?
  - Illustrative examples
  - Numpy examples



## Numpy example

- Input: numpy array X
  - X.shape = (11,11,4)
- Convolution layer
  - Number of filters: K = 2
  - Filter size:  $5 \times 5 \times 4$
  - Stride size:  $2 \times 2$
  - Zero padding size: 0
- Output: Denote as V
  - Output width and height:  $\frac{11-5}{2} + 1 = 4$
  - Depth: 2



#### Numpy example

- First depth slice, along the first column: Filter parameters  $W_0$ , Bias  $b_0$ .  $W_0$ . shape = (5, 5, 4)
  - $V[0,0,0] = np.sum(X[:5,:5,:] * W_0) + b_0$
  - $V[1,0,0] = np.sum(X[2:7,:5,:] * W_0) + b_0$
  - $V[2,0,0] = np.sum(X[4:9,:5,:] * W_0) + b_0$
  - $V[3,0,0] = np.sum(X[6:11,:5,:] * W_0) + b_0$



#### Numpy example

• For a different neuron: Filter parameters  $W_1$ , bias  $b_1$ 

• 
$$V[0,0,1] = np.sum(X[:5,:5,:] * W_1) + b_1$$

• 
$$V[1,0,1] = np.sum(X[2:7,:5,:] * W_1) + b_1$$

• 
$$V[2,0,1] = np.sum(X[4:9,:5,:] * W_1) + b_1$$

• 
$$V[3,0,1] = np.sum(X[6:11,:5,:] * W_1) + b_1$$

• Question: how do we calculate V[0,1,1] and V[2,3,1]?



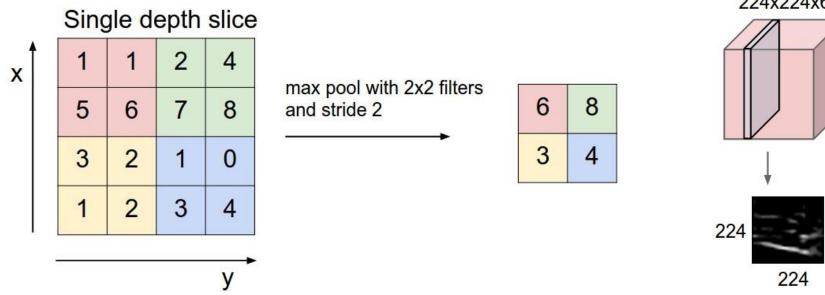
# Lecture plan

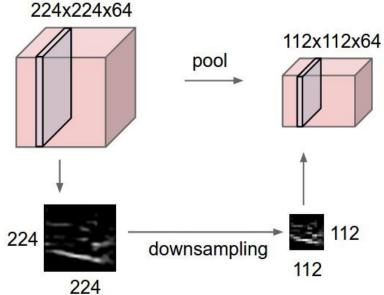
- Introduction to convolutional neural networks
  - Pooling and downsampling



# Pooling layer

• **Pooling** reduces the spatial size of the input: Insert a pooling layer between convolution layers







# Pooling layer

- Input: An image of size  $(W_1, H_1, D_1)$
- Pooling layer
  - Filter size *F*
  - Stride size *S*
- Output size:  $(W_2, H_2, D_2)$

• 
$$W_2 = \frac{W_1 - F}{S} + 1$$

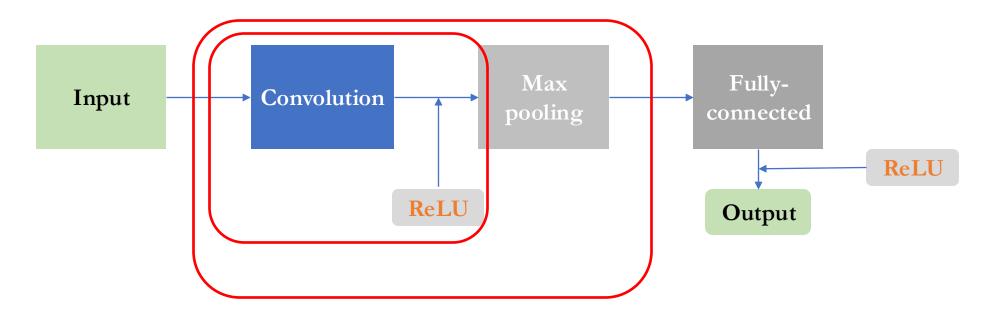
• 
$$H_2 = \frac{H_1 - F}{S} + 1$$

• 
$$D_2 = D_1$$

• Previous example: F = 2 and S = 2



## Summary



• A deep CNN architecture involves multiple convolution and pooling layers



#### Residual networks

- Residual networks are a popular and successful approach to building very deep networks
- Main idea: Let's say we map the information from layer i-1 to layer i  $z^{(i)} = f(z^{(i)}) = g(W^{(i)}z^{(i-1)})$
- The key idea of residual networks is that a layer should perturb the representation from the previous layer rather than replace it entirely

$$z^{(i)} = g\left(z^{(i-1)} + f(z^{(i)})\right)$$



#### Applications

- Convolutional neural networks are most often used for computer vision
  - The AlexNet deep learning system in the 2012 ImageNet competition revolutionized the field
  - The ImageNet competition was a supervised learning task with 1,200,000 images in 1,000 different categories, and systems were evaluated on the "top-5" score—how often the correct category appears in the top five predictions
- Convolutional neural networks are also useful for text classification
  - Given a sentence, predict a certain label based on extracting meaning from the sentence

