Introduction to Artificial Intelligence

Lecture 7: Backpropagation and generalization

September 25, 2025




What is a neural network?

* Demand prediction
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Face recognition
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Al era

* Any company + deep learning # Al company

* Do things that Al is really good at

* Strategic data acquisition
e Unified data warehouse
* Pervasive automation

* New roles (e.g., Machine Learning Engineer) and division of labor




Al transformation

* Execute pilot projects to gain momentum
* Build an in-house Al team

* Provide broad Al training

* Develop an Al strategy

* Develop internal and external communications




Lecture plan

* Backpropagation

. Regularization

* Weight decay
* Transter learning




Training loss objective

* Backpropagation algorithm is the workhorse of modern deep networks
* Train parameters Wy, by, W5, by to minimize the cross-entropy loss

* Minimize the cross-entropy loss as the training objective

‘ Prediction over {0,1,2,3,4,5,6,7,8,9}

output layer
input layer




The gradient of each layer

* Notations:
* Suppose x is a data point with label y: Let £(f (x),y) be the loss

* Input: X,y
* Output (of backpropagation):

a¢ 07

e Partial derivative of € with respect to Wy, by (layer 1): ow.’ 3b
1 1

a¢ 04

* Partial derivative of € with respect to W5, by (layer 2): PP
2 2




How backpropagation works

* Backpropagation consists of two steps

* Step 1: Use forward pass to compute the input to every layer and the output of every
layer

* Step 2: Use backward pass to compute the gradient

* In total, we need to run two passes over the entire neural network to conduct this
computation!

Backpropagation




Forward pass

* Input: 09 = X

*Fori = 1,2,...,L
° Input to 1ayer L: Zi = oi_1Wi + bi
* Output of layer i: 0; = 0;(2;)

® Return OL

* Important takeaway
* Input to layer i: z;
* Output of layer i: 0;




The backward pass

* Notations
* Loss function ¥
* i-th trainable layer: weight matrix W; € R%-1%%i bias b; € R%
* Activation function: 0;: R =- R

* Output

O nd L foralli =12, ... L
oW ; 0b;




Example

* A two-layer linear network with mean squared loss

£(x,y) = (Wawix — Y)z

* Output of backpropagation

df
6‘_\/\/2 = 2(Wowix — y)wyx

¢
aw, = 2(Wo,w X — y)wyx




Example with nonlinear activation

* Nonlinear activation
£(x,y) = (Wyo0(Wyx) — )’)2

* Claims

0t

s = 2(wy01(W1x) — y)og(wyx)

¢
oo = 2(wya(wyx) — y)wyeog (wyix)x
Wi

* Compare with the previous example, we have an additional term which is
/
o1 (Wyx)




Multi-layer network

* A multi-layer linear network with squared loss
2(x,y) = Wwp_q .. wyx — y)?

* Back propgating from last layer to first layer
9¢

) a— — Z(WLWL_l ...Wlx - y)WL—l "'Wlx
wi
0¢
° F = Z(WLWL—l ...Wlx _ y)WLWL—Z "'Wlx
L-1
[ ]
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Looking at an intermediate layer
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Applying chain rule to tackle nonlinear activation

Ziy1 = W;j0; = w;o(z;)

0Zi1+1 T

* In this case, we instead have 35
i

* Caveat: in this example, we focused on one-dimensional input. For multi-
dimensional input, the idea 1s the same, although the computation is
hairier




Summary: The backward pass

0¢ a¢ a¢ 84

and — based on and
dw; db; b OWit1q 0bjt+1

* Decompose the gradient at this layer back to the gradient of the previous layer

* Write

* Find the gradient at every layer by going backward from the final output layer

a¢ 84
* Find out — and —
d aWL abL

0t 0t

and
owp—1 0bp—4

* Find out

d0¢ a¢

ana —
6W1 d 6b1

* Find out




Lecture plan

* Backpropagation
* Regularization

* Weight decay
* Transter learning




Regularization

* Weight decay: adding a penalty of 1Y; W to the loss function used to
train the model
* Weight decay is equivalent to €,-regularization or ridge regression (next slide)

* Dropout: at each step of training, dropout works by randomly dropping
a chosen subset of neurons, and applying backpropagation to a new
version of the neural network




[lustrating weight decay 1n linear models

Linear model: Y = By + X1 6 + X, + -+ X, + €

* Suppose the number of predictors p > n (e.g, this happens a lot in
bioinformatics, such as gene expressions): we have more parameters than
observations

* How can we estimate 5?7




Example

* Predict Boston house prices: Suppose we only have one observation (n = 1)

crim zZn indus chas nox rm age dis rad tax ptratio Istat medv

45.7461 O 18.1 0 0.693 4.519 100 1.6582 24 666 20.2 36.98 /

* Suppose we want to estimate the coetticients in simple linear regression:

medv = [, + Istat - f; + ¢

* How can we use one observation to estimate 5y, 51°?




medv
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Which Sy and 3; should we choose?
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All of these are valid solutions!
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If we have one more observation...

* Suppose we only have two observations (n = 2)

crim zZn indus chas nox rm age dis rad tax ptratio Istat medv
0.28955 0 10.59 0 0.489 5.412 9.8 3.5875 4 277 18.6 29.55 23.7
45.74610 0 18.10 0 0.693 4.519 100.0 1.6582 24 666 20.2 36.98 7.0

* Let us consider the same model: medv = [y + lstat - f; + €

* We can estimate B and [ with two data points (solving a linear system)




Example
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* Problem: The fitted curve is sensitive to the medv of these two observations




Example

* If one of the two observations changes, we can get a very different fitted curve

=]
(]

medv
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* This i1s an example of overfitting. ..
p g

* Question: can you think of other examples of overfitting?




Ridge regression

* Find a new line that does not fit the training data perfectly

o
[ap]

(29785,23.7)

medyv
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28 30 32 34 36 38

Istat

e Introduce a small amount of bias into the fit to data




Ridge regression

* This can be achieved with ridge regression: by adding a small amount of
bias, we reduce variance (l.e., the fitted lines are less sensitive to changes with
the input)
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Fitting ridge regression

e [ 1near regression minimizes

n
MSE = Z(medvi — By — Istat - B1)?

=1

* Ridge regression minimizes
i (medv; — By — Istat; - B)* + 1 Bf

* 4 = 0: tuning hyper-parameter
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Example
* Suppose 4 = 10

* Linear regression fit: medv = 90.118 — 2.248 - [stat

A

. B, = —2.248

. ?zl(medv,; — B, — Istat; - ,[?1)2 + 1 B2
=04+ 10-2.248% = 50.535

* Perfectly fitting the data incurs high loss
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Ridge regression

* Suppose 4 = 10
* Ridge regression fit: medv = 70.234 — 1.650 - [stat

o
(op]

« fR = —1.650

n A 2 A DN 2
. ?zl(medv,; — B, — Istat; -,Bf) + A - (,Bf)
= 4931 +4.931+ 10 1.650% = 37.084

< 50.535
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Ridge regression is less sensitive to [stat

* Linear regression fit: medv = 90.118 —
2.248 - Istat

30

* One unit change in [stat results in
— 2.248 units change in medv

* Ridge regression fit: medv = 70.234 —
1.650 - Istat

* One unit change in Istat results in 8 % 32 % 36 3
— 1.650 units change in medv



Role of A in ridge regression

* Ridge regression minimizes
o« Y- (medv; — By — Istat; - B1)? + 1 - B iambaa =5

o
[sp]

+1=5
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Role of A in ridge regression

* Ridge regression minimizes
« Y (medv; — By — Istat; - B1)* + 1 - B
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Role of A in ridge regression

* Ridge regression minimizes
° ?’=1(medvi —_ ﬁO —_ lstatl . ﬂl)z _|_ A . Blz lambda =100
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Role of A in ridge regression

* Ridge regression minimizes
o« Y- (medv; — By — Istat; - B1)? + 1 - B

* A =10,000
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Predictive line is less sensitive to Alstat as A increases

* Ridge regression minimizes: Y.1—,(medv; — By — Istat; - 1)* + 1 - Bf

lambda =5 lambda =10 lambda = 10000
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Choose /4 by cross-validation

How to choose the optimal A?

1. Select a grid of A values

2. Compute the cross-validation error for each A value
3. Select the A with the smallest cross-validation error

4. Refit the model using all observations and selected A




Example: Credit card dataset (ridge regression)

* Cross validation to choose the optimal A

Cross—Validation Error

25.2 254 25.6

25.0

Optimal A selectéad
by cross validation

Standardized Coefficients

-100 0 100 300

-300

- - -
-
- -

— Income

- - - Limit

----- Rating
Student



Quiz: Which line 1s the ridge regression fit?

* One observation (n = 1)

crim zn indus chas nox rm age dis rad tax ptratio Istat medv
45.7461 O 18.1 0 0.693 4.519 100 1.6582 24 666 20.2 36.98 7
2|8 3|0 312 3I4 3Is 3I3 2|8 3|O 3|2 3‘4 !;6 3|8 2I8 3I0 ;2 3[4 (;6 3‘8

Istat Istat Istat




Transfer learning

* Transfer learning: use the information learned from one task to help
learn another task

* Example #1: building a face recognition system from open-source
models plus a few hundred labeled examples

* Example #2: fine-tuning a pre-trained language model for solving a
downstream text prediction task

* Multitask learning: simultaneously train a multitask learning model on
multiple objectives
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