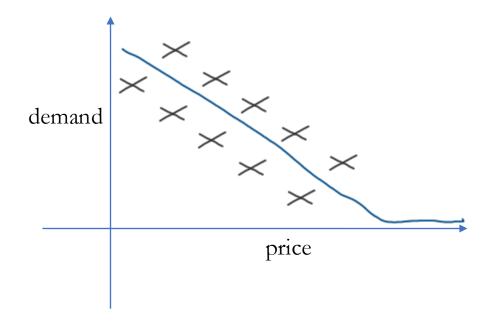
Introduction to Artificial Intelligence

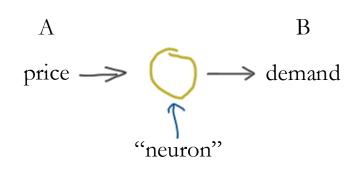
Lecture 7: Backpropagation and generalization

September 25, 2025

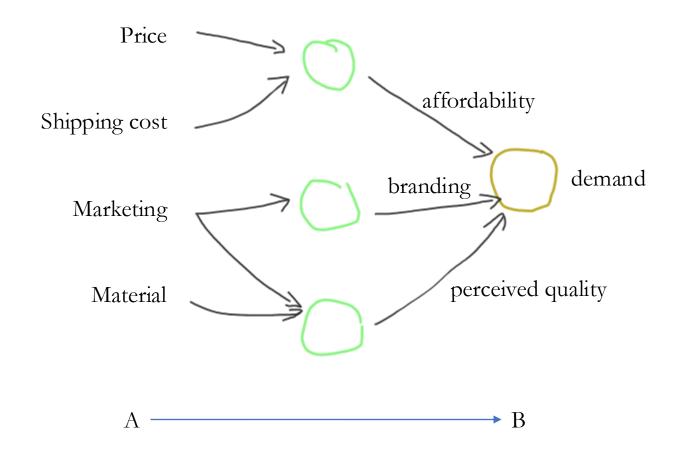
What is a neural network?

• Demand prediction

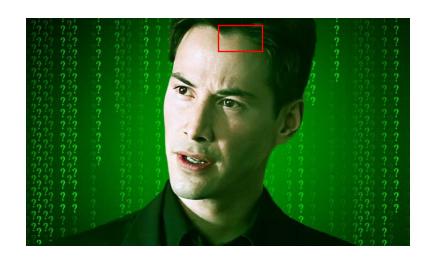




Demand prediction



Face recognition

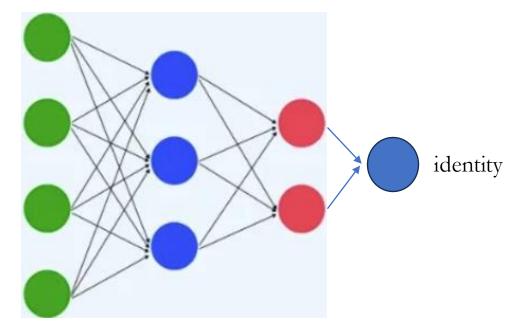


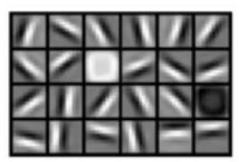
10	20	30	15	17	7	8	31	8
12	13	345	100	5	0	34	30	1001
230	301	9	0	45	123	0	20	201
31	130	2	9	0	40	2	15	46
1	15	21	42	55	7	1	12	10

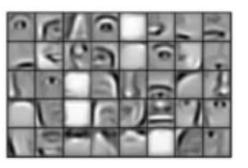
Face recognition

1,000,000 pixel array

3,000,000 colored pixels







AI era

• Any company + deep learning ≠ AI company

- Do things that AI is really good at
 - Strategic data acquisition
 - Unified data warehouse
 - Pervasive automation
 - New roles (e.g., Machine Learning Engineer) and division of labor

AI transformation

• Execute pilot projects to gain momentum

• Build an in-house AI team

• Provide broad AI training

• Develop an AI strategy

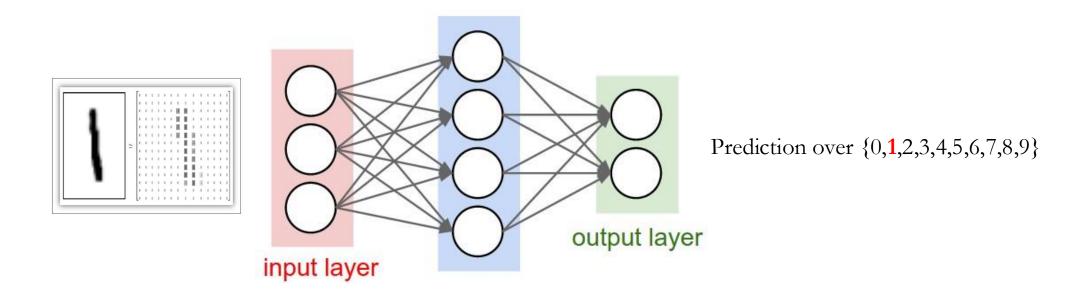
• Develop internal and external communications

Lecture plan

- Backpropagation
- Regularization
 - Weight decay
 - Transfer learning

Training loss objective

- Backpropagation algorithm is the workhorse of modern deep networks
- Train parameters W_1 , b_1 , W_2 , b_2 to minimize the cross-entropy loss
- Minimize the cross-entropy loss as the training objective

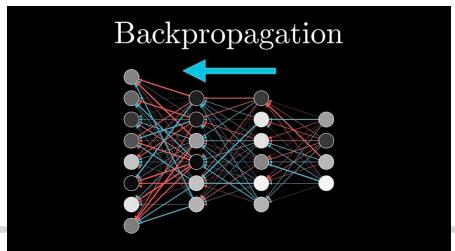


The gradient of each layer

- Notations:
 - Suppose x is a data point with label y: Let $\ell(f(x), y)$ be the loss
- Input: *x*, *y*
- Output (of backpropagation):
 - Partial derivative of ℓ with respect to W_1 , b_1 (layer 1): $\frac{\partial \ell}{\partial W_1}$, $\frac{\partial \ell}{\partial b_1}$
 - Partial derivative of ℓ with respect to W_2 , b_2 (layer 2): $\frac{\partial \ell}{\partial W_2}$, $\frac{\partial \ell}{\partial b_2}$

How backpropagation works

- Backpropagation consists of two steps
 - Step 1: Use forward pass to compute the input to every layer and the output of every layer
 - Step 2: Use backward pass to compute the gradient
 - In total, we need to run two passes over the entire neural network to conduct this computation!



Forward pass

- Input: $o_0 = x$
- For i = 1, 2, ..., L
 - Input to layer $i: z_i = o_{i-1}W_i + b_i$
 - Output of layer $i: o_i = \sigma_i(z_i)$
- Return o_L

- Important takeaway
 - Input to layer $i: z_i$
 - Output of layer $i: o_i$

The backward pass

Notations

- Loss function ℓ
- *i*-th trainable layer: weight matrix $W_i \in \mathbb{R}^{d_{i-1} \times d_i}$, bias $b_i \in \mathbb{R}^{d_i}$
- Activation function: $\sigma_i : \mathbb{R} \to \mathbb{R}$

• Output

•
$$\frac{\partial \ell}{\partial W_i}$$
 and $\frac{\partial \ell}{\partial b_i}$ for all $i=1,2,\ldots,L$

Example

• A two-layer linear network with mean squared loss $\ell(x,y) = (w_2w_1x - y)^2$

Output of backpropagation

$$\frac{\partial \ell}{\partial w_2} = 2(w_2 w_1 x - y) w_1 x$$

$$\frac{\partial \ell}{\partial w_1} = 2(w_2 w_1 x - y) w_2 x$$

Example with nonlinear activation

Nonlinear activation

$$\ell(x, y) = (w_2 \sigma_1(w_1 x) - y)^2$$

• Claims

$$\frac{\partial \ell}{\partial w_2} = 2(w_2 \sigma_1(w_1 x) - y)\sigma_1(w_1 x)$$

$$\frac{\partial \ell}{\partial w_1} = 2(w_2 \sigma(w_1 x) - y)w_2 \sigma_1'(w_1 x)x$$

• Compare with the previous example, we have an additional term which is $\sigma_1'(w_1x)$

Multi-layer network

- A multi-layer linear network with squared loss $\ell(x,y) = (w_L w_{L-1} \dots w_1 x y)^2$
- Back propgating from last layer to first layer

•
$$\frac{\partial \ell}{\partial w_L} = 2(w_L w_{L-1} \dots w_1 x - y) w_{L-1} \dots w_1 x$$

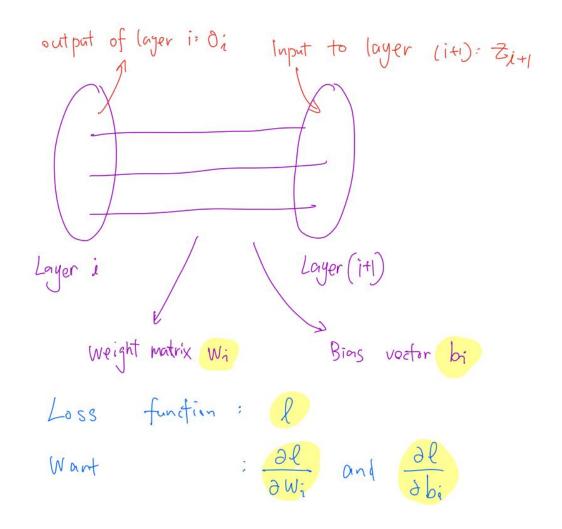
•
$$\frac{\partial \ell}{\partial w_{L-1}} = 2(w_L w_{L-1} \dots w_1 x - y) w_L w_{L-2} \dots w_1 x$$

•

•
$$\frac{\partial \ell}{\partial w_1} = 2(w_L w_{L-1} \dots w_1 x - y) w_L w_{L-1} \dots w_2 x$$

Looking at an intermediate layer

• Illustration



Applying chain rule to tackle nonlinear activation

$$z_{i+1} = w_i o_i = w_i \sigma(z_i)$$

• In this case, we instead have $\frac{\partial z_{i+1}}{\partial z_i} = w_i \sigma'(z_i)$

• Caveat: in this example, we focused on one-dimensional input. For multidimensional input, the idea is the same, although the computation is hairier

Summary: The backward pass

- Write $\frac{\partial \ell}{\partial w_i}$ and $\frac{\partial \ell}{\partial b_i}$ based on $\frac{\partial \ell}{\partial w_{i+1}}$ and $\frac{\partial \ell}{\partial b_{i+1}}$
 - Decompose the gradient at this layer back to the gradient of the previous layer

- Find the gradient at every layer by going backward from the final output layer
 - Find out $\frac{\partial \ell}{\partial w_L}$ and $\frac{\partial \ell}{\partial b_L}$
 - Find out $\frac{\partial \ell}{\partial w_{L-1}}$ and $\frac{\partial \ell}{\partial b_{L-1}}$
 - •
 - Find out $\frac{\partial \ell}{\partial w_1}$ and $\frac{\partial \ell}{\partial b_1}$

Lecture plan

- Backpropagation
- Regularization
 - Weight decay
 - Transfer learning

Regularization

- Weight decay: adding a penalty of $\lambda \sum_i w_i^2$ to the loss function used to train the model
 - Weight decay is equivalent to ℓ_2 -regularization or ridge regression (next slide)
- **Dropout:** at each step of training, dropout works by randomly dropping a chosen subset of neurons, and applying backpropagation to a new version of the neural network

Illustrating weight decay in linear models

Linear model:
$$Y = \beta_0 + X_1\beta_1 + X_2\beta_2 + \dots + X_p\beta_p + \varepsilon$$

• Suppose the number of predictors p > n (e.g., this happens a lot in bioinformatics, such as gene expressions): we have more parameters than observations

• How can we estimate β ?

Example

• Predict Boston house prices: Suppose we only have one observation (n = 1)

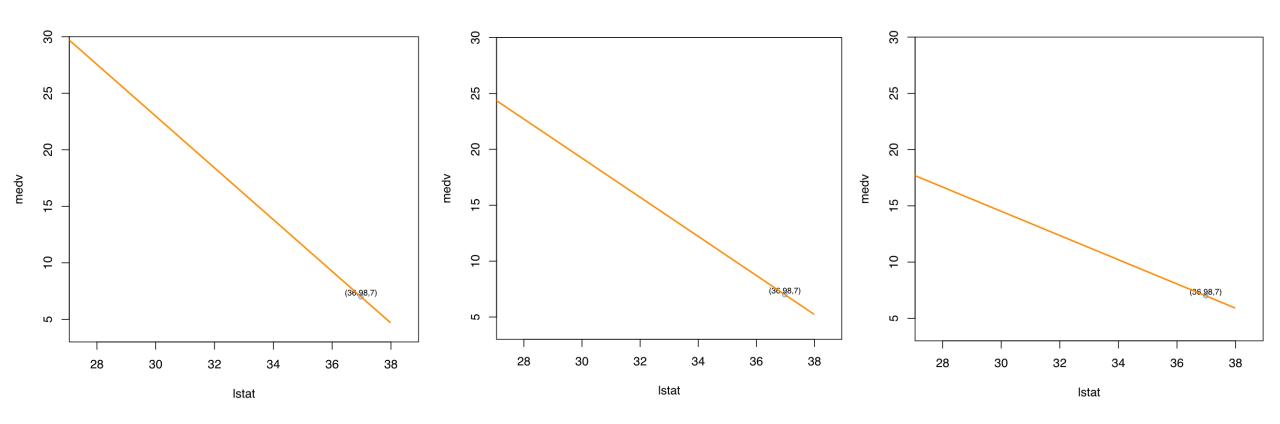
crim [‡]	zn ‡	indus [‡]	chas ‡	nox [‡]	rm ‡	age ‡	dis ‡	rad [‡]	tax ‡	ptratio [‡]	Istat [‡]	medv [‡]
45.7461	0	18.1	0	0.693	4.519	100	1.6582	24	666	20.2	36.98	7

• Suppose we want to estimate the coefficients in simple linear regression:

$$medv = \beta_0 + lstat \cdot \beta_1 + \varepsilon$$

• How can we use one observation to estimate β_0 , β_1 ?

Which β_0 and β_1 should we choose?



All of these are valid solutions!

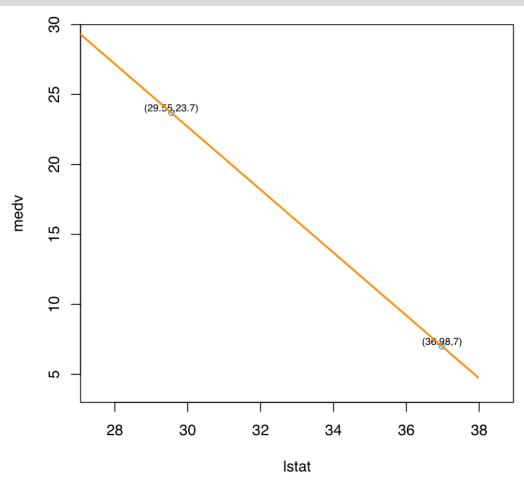
If we have one more observation...

• Suppose we only have two observations (n = 2)

crim [‡]	zn [‡]	indus [‡]	chas 🗦	nox [‡]	rm ‡	age ‡	dis [‡]	rad [‡]	tax [‡]	ptratio [‡]	Istat 🗘	medv [‡]
0.28955	0	10.59	0	0.489	5.412	9.8	3.5875	4	277	18.6	29.55	23.7
45.74610	0	18.10	0	0.693	4.519	100.0	1.6582	24	666	20.2	36.98	7.0

- Let us consider the same model: $medv = \beta_0 + lstat \cdot \beta_1 + \varepsilon$
- We can estimate β_0 and β_1 with two data points (solving a linear system)

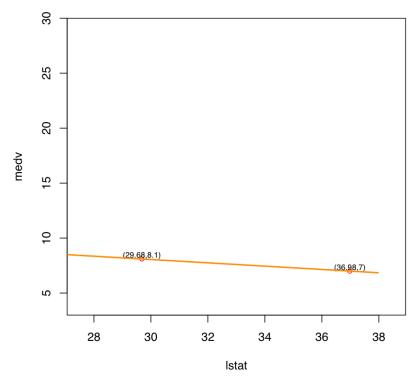
Example



• Problem: The fitted curve is sensitive to the medv of these two observations

Example

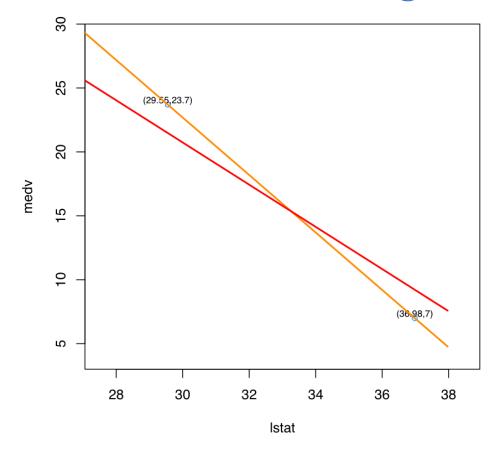
• If one of the two observations changes, we can get a very different fitted curve



- This is an example of overfitting...
- Question: can you think of other examples of overfitting?

Ridge regression

• Find a new line that does not fit the training data perfectly

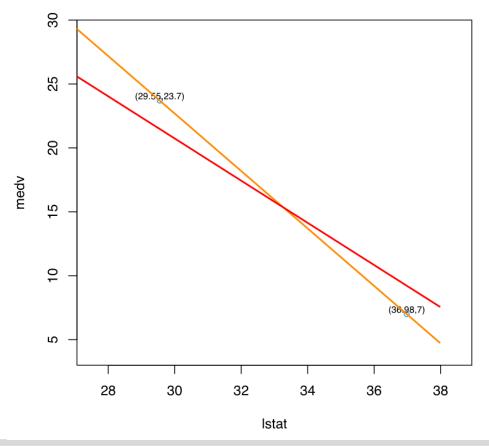


• Introduce a small amount of bias into the fit to data

Ridge regression

• This can be achieved with ridge regression: by adding a small amount of bias, we reduce variance (i.e., the fitted lines are less sensitive to changes with

the input)

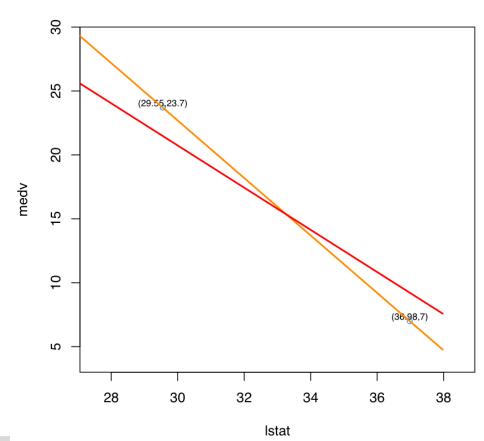


Fitting ridge regression

• Linear regression minimizes

$$MSE = \sum_{i=1}^{n} (medv_i - \beta_0 - lstat \cdot \beta_1)^2$$

- Ridge regression minimizes
 - $\sum_{i=1}^{n} (medv_i \beta_0 lstat_i \cdot \beta_1)^2 + \lambda \cdot \beta_1^2$
 - $\lambda \ge 0$: tuning hyper-parameter



Example

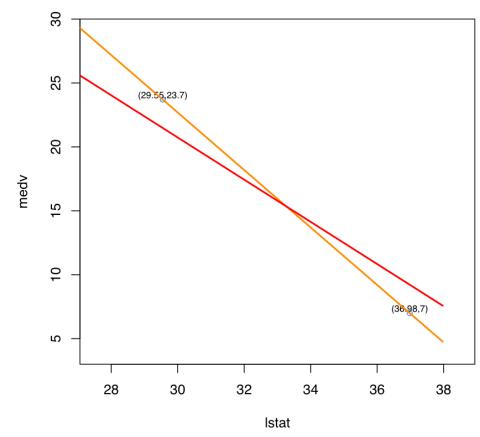
- Suppose $\lambda = 10$
- Linear regression fit: $\widehat{medv} = 90.118 2.248 \cdot lstat$

•
$$\hat{\beta}_1 = -2.248$$

•
$$\sum_{i=1}^{n} (medv_i - \hat{\beta}_0 - lstat_i \cdot \hat{\beta}_1)^2 + \lambda \cdot \hat{\beta}_1^2$$

= $0 + 10 \cdot 2.248^2 = 50.535$

• Perfectly fitting the data incurs high loss

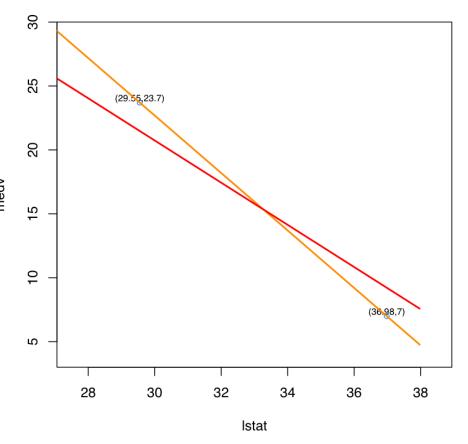


Ridge regression

- Suppose $\lambda = 10$
- Ridge regression fit: $\widehat{medv} = 70.234 1.650 \cdot lstat$

•
$$\hat{\beta}_1^R = -1.650$$

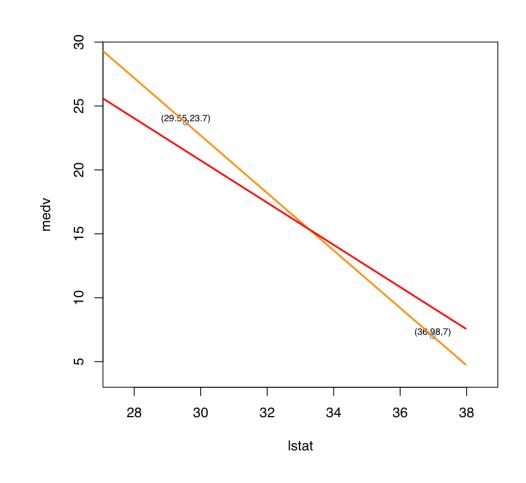
• $\sum_{i=1}^{n} (medv_i - \hat{\beta}_0 - lstat_i \cdot \hat{\beta}_1^R)^2 + \lambda \cdot (\hat{\beta}_1^R)^2$ = $4.931 + 4.931 + 10 \cdot 1.650^2 = 37.084$ < 50.535



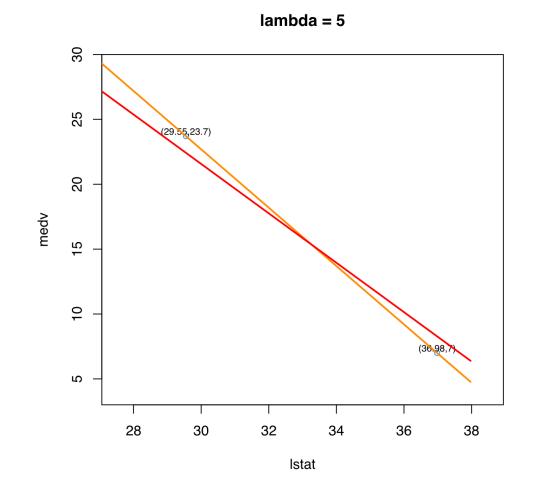
Ridge regression is less sensitive to *lstat*

- Linear regression fit: $\widehat{medv} = 90.118 2.248 \cdot lstat$
- One unit change in *lstat* results in
 - 2.248 units change in *medv*
- Ridge regression fit: $\widehat{medv} = 70.234 1.650 \cdot lstat$

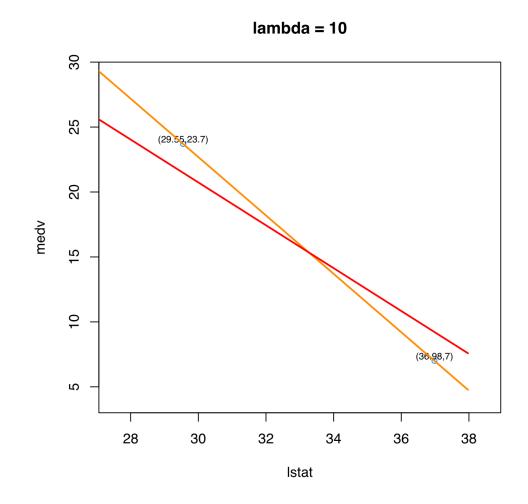
- One unit change in *lstat* results in
 - 1.650 units change in medv



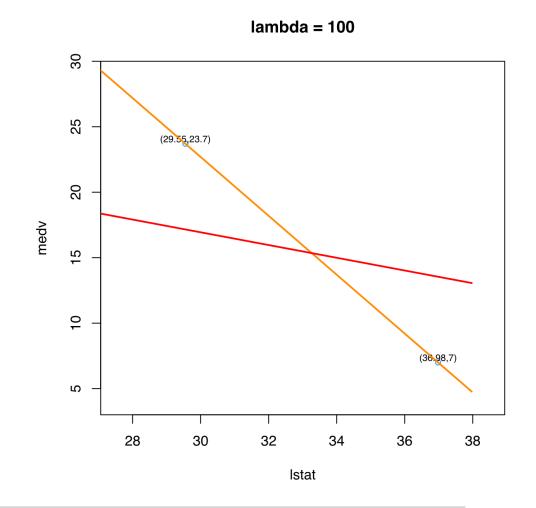
- Ridge regression minimizes
 - $\sum_{i=1}^{n} (medv_i \beta_0 lstat_i \cdot \beta_1)^2 + \lambda \cdot \beta_1^2$
 - $\lambda = 5$



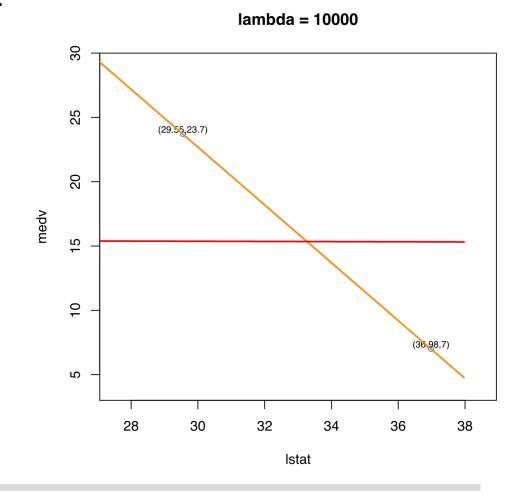
- Ridge regression minimizes
 - $\sum_{i=1}^{n} (medv_i \beta_0 lstat_i \cdot \beta_1)^2 + \lambda \cdot \beta_1^2$
 - $\lambda = 10$



- Ridge regression minimizes
 - $\sum_{i=1}^{n} (medv_i \beta_0 lstat_i \cdot \beta_1)^2 + \lambda \cdot \beta_1^2$
 - $\lambda = 100$

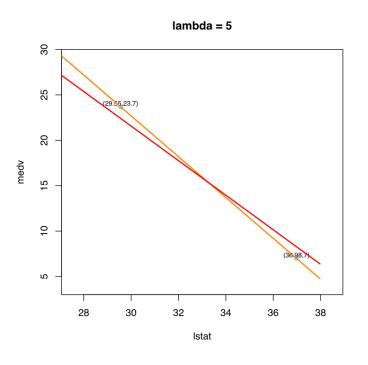


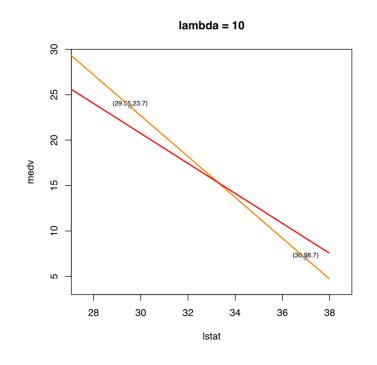
- Ridge regression minimizes
 - $\sum_{i=1}^{n} (medv_i \beta_0 lstat_i \cdot \beta_1)^2 + \lambda \cdot \beta_1^2$
 - $\lambda = 10,000$

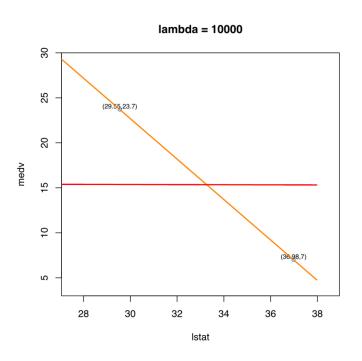


Predictive line is less sensitive to $\Delta lstat$ as λ increases

• Ridge regression minimizes: $\sum_{i=1}^{n} (medv_i - \beta_0 - lstat_i \cdot \beta_1)^2 + \lambda \cdot \beta_1^2$







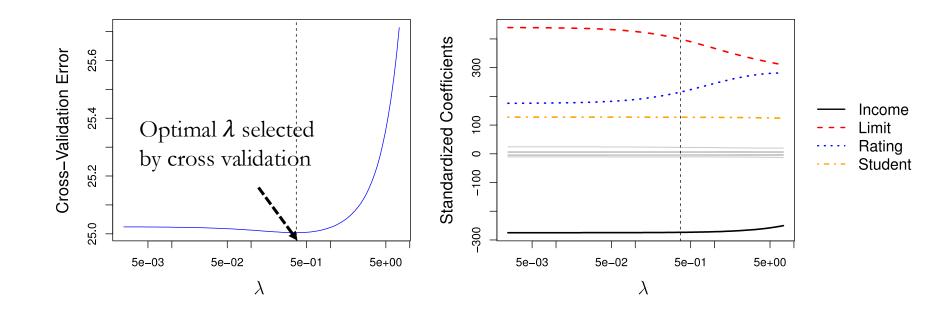
Choose λ by cross-validation

How to choose the optimal λ ?

- 1. Select a grid of λ values
- 2. Compute the cross-validation error for each λ value
- 3. Select the λ with the smallest cross-validation error
- 4. Refit the model using all observations and selected λ

Example: Credit card dataset (ridge regression)

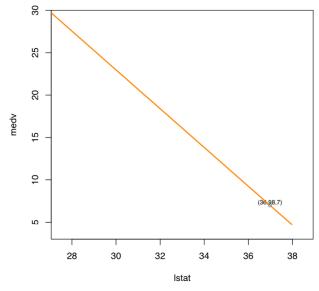
• Cross validation to choose the optimal λ

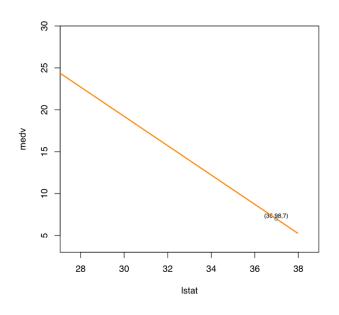


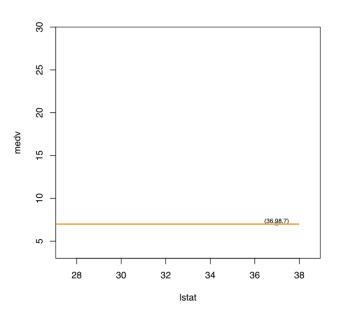
Quiz: Which line is the ridge regression fit?

• One observation (n = 1)

crim [‡]	zn ‡	indus [‡]	chas [‡]	nox [‡]	rm [‡]	age ‡	dis [‡]	rad [‡]	tax [‡]	ptratio [‡]	Istat 🗘	medv [‡]
45.7461	0	18.1	0	0.693	4.519	100	1.6582	24	666	20.2	36.98	7







Transfer learning

• Transfer learning: use the information learned from one task to help learn another task

• Example #1: building a face recognition system from open-source models plus a few hundred labeled examples

• Example #2: fine-tuning a pre-trained language model for solving a downstream text prediction task

• Multitask learning: simultaneously train a multitask learning model on multiple objectives

