
Introduction to Artificial Intelligence

Lecture 7: Backpropagation and generalization

September 25, 2025



What is a neural network?

• Demand prediction
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Face recognition
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AI era

• Any company + deep learning ≠ AI company

• Do things that AI is really good at
• Strategic data acquisition

• Unified data warehouse

• Pervasive automation

• New roles (e.g., Machine Learning Engineer) and division of  labor



AI transformation

• Execute pilot projects to gain momentum

• Build an in-house AI team

• Provide broad AI training

• Develop an AI strategy

• Develop internal and external communications



Lecture plan

• Backpropagation

• Regularization

• Weight decay

• Transfer learning



Training loss objective

• Backpropagation algorithm is the workhorse of  modern deep networks

• Train parameters 𝑊1, 𝑏1, 𝑊2, 𝑏2 to minimize the cross-entropy loss

• Minimize the cross-entropy loss as the training objective

Prediction over {0,1,2,3,4,5,6,7,8,9}



The gradient of  each layer

• Notations:

• Suppose 𝑥 is a data point with label 𝑦: Let ℓ(𝑓(𝑥), 𝑦) be the loss

• Input: 𝑥, 𝑦

• Output (of  backpropagation):

• Partial derivative of  ℓ with respect to 𝑊1, 𝑏1 (layer 1): 
𝜕ℓ

𝜕𝑊1
,

𝜕ℓ

𝜕𝑏1

• Partial derivative of  ℓ with respect to 𝑊2, 𝑏2 (layer 2): 
𝜕ℓ

𝜕𝑊2
,

𝜕ℓ

𝜕𝑏2



How backpropagation works

• Backpropagation consists of  two steps

• Step 1: Use forward pass to compute the input to every layer and the output of  every 
layer

• Step 2: Use backward pass to compute the gradient

• In total, we need to run two passes over the entire neural network to conduct this 
computation!



Forward pass

• Input: 𝑜0 = 𝑥

• For 𝑖 =  1, 2, … , 𝐿
• Input to layer 𝑖: 𝑧𝑖 = 𝑜𝑖−1𝑊𝑖 + 𝑏𝑖

• Output of  layer 𝑖: 𝑜𝑖 = 𝜎𝑖(𝑧𝑖)

• Return 𝑜𝐿

• Important takeaway

• Input to layer 𝑖: 𝑧𝑖

• Output of  layer 𝑖: 𝑜𝑖



The backward pass

• Notations

• Loss function ℓ

• 𝑖-th trainable layer: weight matrix 𝑊𝑖 ∈ ℝ𝑑𝑖−1×𝑑𝑖 , bias 𝑏𝑖 ∈ ℝ𝑑𝑖

• Activation function: 𝜎𝑖: ℝ → ℝ

• Output

•
𝜕ℓ

𝜕𝑊𝑖
 and 

𝜕ℓ

𝜕𝑏𝑖
 for all 𝑖 = 1,2, … , 𝐿



Example

• A two-layer linear network with mean squared loss
ℓ 𝑥, 𝑦 = 𝑤2𝑤1𝑥 − 𝑦 2

• Output of  backpropagation

𝜕ℓ

𝜕𝑤2
= 2 𝑤2𝑤1𝑥 − 𝑦 𝑤1𝑥

𝜕ℓ

𝜕𝑤1
= 2 𝑤2𝑤1𝑥 − 𝑦 𝑤2𝑥



Example with nonlinear activation

• Nonlinear activation
ℓ 𝑥, 𝑦 = 𝑤2𝜎1(𝑤1𝑥) − 𝑦 2

• Claims
𝜕ℓ

𝜕𝑤2
= 2 𝑤2𝜎1 𝑤1𝑥 − 𝑦 𝜎1 𝑤1𝑥

𝜕ℓ

𝜕𝑤1
= 2 𝑤2𝜎 𝑤1𝑥 − 𝑦 𝑤2𝜎1

′ 𝑤1𝑥 𝑥

• Compare with the previous example, we have an additional term which is 
𝜎1′(𝑤1𝑥)



Multi-layer network

• A multi-layer linear network with squared loss
ℓ 𝑥, 𝑦 = 𝑤𝐿𝑤𝐿−1 … 𝑤1𝑥 − 𝑦 2

• Back propgating from last layer to first layer

•
𝜕ℓ

𝜕𝑤𝐿
= 2 𝑤𝐿𝑤𝐿−1 … 𝑤1𝑥 − 𝑦 𝑤𝐿−1 … 𝑤1𝑥

•
𝜕ℓ

𝜕𝑤𝐿−1
= 2 𝑤𝐿𝑤𝐿−1 … 𝑤1𝑥 − 𝑦 𝑤𝐿𝑤𝐿−2 … 𝑤1𝑥

• …

•
𝜕ℓ

𝜕𝑤1
= 2 𝑤𝐿𝑤𝐿−1 … 𝑤1𝑥 − 𝑦 𝑤𝐿𝑤𝐿−1 … 𝑤2𝑥



Looking at an intermediate layer

• Illustration



Applying chain rule to tackle nonlinear activation

𝑧𝑖+1 = 𝑤𝑖𝑜𝑖 = 𝑤𝑖𝜎(𝑧𝑖)

• In this case, we instead have 
𝜕𝑧𝑖+1

𝜕𝑧𝑖
= 𝑤𝑖𝜎′(𝑧𝑖)

• Caveat: in this example, we focused on one-dimensional input. For multi-
dimensional input, the idea is the same, although the computation is 
hairier



Summary: The backward pass

• Write 
𝜕ℓ

𝜕𝑤𝑖
 and 

𝜕ℓ

𝜕𝑏𝑖
 based on 

𝜕ℓ

𝜕𝑤𝑖+1
 and 

𝜕ℓ

𝜕𝑏𝑖+1

• Decompose the gradient at this layer back to the gradient of  the previous layer

• Find the gradient at every layer by going backward from the final output layer

• Find out
𝜕ℓ

𝜕𝑤𝐿
 and 

𝜕ℓ

𝜕𝑏𝐿

• Find out
𝜕ℓ

𝜕𝑤𝐿−1
 and 

𝜕ℓ

𝜕𝑏𝐿−1

• …

• Find out
𝜕ℓ

𝜕𝑤1
 and 

𝜕ℓ

𝜕𝑏1



Lecture plan

• Backpropagation

• Regularization

• Weight decay

• Transfer learning



Regularization

• Weight decay: adding a penalty of  𝜆 σ𝑖 𝑤𝑖
2 to the loss function used to 

train the model
• Weight decay is equivalent to ℓ2-regularization or ridge regression (next slide)

• Dropout: at each step of  training, dropout works by randomly dropping 
a chosen subset of  neurons, and applying backpropagation to a new 
version of  the neural network



Illustrating weight decay in linear models
Linear model: 𝑌 = 𝛽0 + 𝑋1𝛽1 + 𝑋2𝛽2 + ⋯ + 𝑋𝑝𝛽𝑝 + 𝜀

• Suppose the number of  predictors 𝑝 > 𝑛 (e.g., this happens a lot in 
bioinformatics, such as gene expressions): we have more parameters than 
observations

• How can we estimate 𝛽?



Example

• Predict Boston house prices: Suppose we only have one observation (𝑛 = 1)

• Suppose we want to estimate the coefficients in simple linear regression:

𝑚𝑒𝑑𝑣 = 𝛽0 + 𝑙𝑠𝑡𝑎𝑡 ⋅ 𝛽1 + 𝜀

• How can we use one observation to estimate 𝛽0, 𝛽1?



Which 𝛽0 and 𝛽1 should we choose?

All of  these are valid solutions!



If  we have one more observation…

• Suppose we only have two observations (𝑛 = 2)

• Let us consider the same model: 𝑚𝑒𝑑𝑣 = 𝛽0 + 𝑙𝑠𝑡𝑎𝑡 ⋅ 𝛽1 + 𝜀

• We can estimate 𝛽0 and 𝛽1 with two data points (solving a linear system)



Example

• Problem: The fitted curve is sensitive to the 𝑚𝑒𝑑𝑣 of  these two observations



Example

• If  one of  the two observations changes, we can get a very different fitted curve

• This is an example of  overfitting…

• Question: can you think of  other examples of  overfitting?



Ridge regression

• Find a new line that does not fit the training data perfectly

• Introduce a small amount of  bias into the fit to data



Ridge regression

• This can be achieved with ridge regression: by adding a small amount of  
bias, we reduce variance (i.e., the fitted lines are less sensitive to changes with 
the input)



Fitting ridge regression

• Linear regression minimizes

𝑀𝑆𝐸 = ෍

𝑖=1

𝑛

𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡 ⋅ 𝛽1
2

• Ridge regression minimizes 

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ 𝛽1

2 + 𝜆 ⋅ 𝛽1
2

• 𝜆 ≥ 0:  tuning hyper-parameter



Example

• Suppose 𝜆 = 10

• Linear regression fit: ෣𝑚𝑒𝑑𝑣 = 90.118 − 2.248 ⋅ 𝑙𝑠𝑡𝑎𝑡

• መ𝛽1 = −2.248

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − መ𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ መ𝛽1

2
+ 𝜆 ⋅ መ𝛽1

2

 = 0 + 10 ⋅ 2.2482 = 50.535

• Perfectly fitting the data incurs high loss



Ridge regression

• Suppose 𝜆 = 10

• Ridge regression fit: ෣𝑚𝑒𝑑𝑣 = 70.234 − 1.650 ⋅ 𝑙𝑠𝑡𝑎𝑡

• መ𝛽1
𝑅 = −1.650

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − መ𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ መ𝛽1

𝑅 2
+ 𝜆 ⋅ መ𝛽1

𝑅 2

 = 4.931 + 4.931 + 10 ⋅ 1.6502 = 37.084

 < 50.535



Ridge regression is less sensitive to 𝑙𝑠𝑡𝑎𝑡 

• Linear regression fit: ෣𝑚𝑒𝑑𝑣 = 90.118 −
2.248 ⋅ 𝑙𝑠𝑡𝑎𝑡

• One unit change in 𝑙𝑠𝑡𝑎𝑡 results in 
− 2.248 units change in 𝑚𝑒𝑑𝑣

• Ridge regression fit: ෣𝑚𝑒𝑑𝑣 = 70.234 −
1.650 ⋅ 𝑙𝑠𝑡𝑎𝑡

• One unit change in 𝑙𝑠𝑡𝑎𝑡 results in 
− 1.650 units change in 𝑚𝑒𝑑𝑣



Role of  𝜆 in ridge regression

• Ridge regression minimizes 

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ 𝛽1

2 + 𝜆 ⋅ 𝛽1
2

• 𝜆 = 5



Role of  𝜆 in ridge regression

• Ridge regression minimizes 

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ 𝛽1

2 + 𝜆 ⋅ 𝛽1
2

• 𝜆 = 10



Role of  𝜆 in ridge regression

• Ridge regression minimizes 

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ 𝛽1

2 + 𝜆 ⋅ 𝛽1
2

• 𝜆 = 100



Role of  𝜆 in ridge regression

• Ridge regression minimizes 

• σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ 𝛽1

2 + 𝜆 ⋅ 𝛽1
2

• 𝜆 = 10,000



Predictive line is less sensitive to Δ𝑙𝑠𝑡𝑎𝑡 as 𝜆 increases 

• Ridge regression minimizes: σ𝑖=1
𝑛 𝑚𝑒𝑑𝑣𝑖 − 𝛽0 − 𝑙𝑠𝑡𝑎𝑡𝑖 ⋅ 𝛽1

2 + 𝜆 ⋅ 𝛽1
2



Choose 𝜆 by cross-validation 
How to choose the optimal 𝜆?

1. Select a grid of  𝜆 values

2. Compute the cross-validation error for each 𝜆 value

3. Select the 𝜆 with the smallest cross-validation error

4. Refit the model using all observations and selected 𝜆



Example: Credit card dataset (ridge regression)

• Cross validation to choose the optimal 𝜆

Optimal 𝜆 selected 

by cross validation 



Quiz: Which line is the ridge regression fit?

• One observation (𝑛 = 1)



Transfer learning

• Transfer learning: use the information learned from one task to help 
learn another task

• Example #1: building a face recognition system from open-source 
models plus a few hundred labeled examples

• Example #2: fine-tuning a pre-trained language model for solving a 
downstream text prediction task

• Multitask learning: simultaneously train a multitask learning model on 
multiple objectives
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