Introduction to Artificial Intelligence

Lecture 6: Neural networks with PyTorch implementation

September 22, 2025

What machine learning can and cannot do

g | Oupu)

Email Spam? (0/1) Spam filtering
Audio Text transcripts Speech recognition
English Chinese Machine translation
Ad, user info Click? (0/1) Online advertising
Image, radar info Position of other cars Self-driving cars
Image of phone Defect? (0/1) Visual inspection
Sequence of words The next word Chatbot

* Simple tasks (mapping A to B) for which humans can easily do (e.g., in a
few seconds)

What machine learning can and cannot do

* Predicting the stock market price

$400

$300

Stock price
$200

$100

Time

What makes an ML problem easier

* Learning a “simple” concept: relatively easy task for a human

* Lots of training data: mapping A to B

Selt-driving car

Can do Cannot do

Stop Hitchhiker Biker turning left

1. Difficult to collect enough data
2. All possible hand gestures are very large
3. Need high accuracy

Strengths and weaknesses of machine learning

* ML tends to work well when: learning a “simple” concept, and there is a
lots of training data

* ML tends to work poorly when: learning concepts from small data, and
perform on new types of data

Size

of bedrooms

of bathrooms

[.atest renovation

Air conditioning

Deep learning

(Artificial) Neural Network

Deep learning

Neuron Big mathematical equation

% A

e
090000

!
(Artificial) Neural Network

* Deep learning: a much better sounding brand, but essentially interchangeable
with neural networks

* Neural networks were originally inspired by the brain, but the details of how
they work are almost completely unrelated to how biological brains work

Al tools

* Machine learning and data science

* Deep learning / neural networks

DN

* Other tools: Generative Al, unsupervised learning, reinforcement

learning, graphical models, planning, knowledge graphs, reasoning, ...

Developing machine learning systems

1. Problem formulation: “help a user find all photos that match a specific
term, such as Paris”

* What parts of the problem can be solved by machine learning?

* Learn a function that maps a photo to a set of labels; then, given a label as a
query, retrieve all photos with that label

* Types of learning problems: supervised, unsupervised, or reinforcement learning
* Semi-supervised

* Weakly supervised

Developing machine learning systems

2. Data collection, assessment, and management
* ImageNet: over 14 million photos with ~20,000 different labels

* Crowdsourcing: data annotators team (xAI, Al trainer)

* Transfer learning: use data from another related problem
* When data are limited: data augmentation helps

* Unbalanced classes

* Outliers

Developing machine learning systems

3. Model selection and training Perfect ROG curve

’ oC.Iassifier
* Choosing a model class ' Better

* Choosing hyperparameters

True positive rate

* Evaluation metrics: false positive rate (imagine building a
system to classify spam email), recetver operating
characteristic (ROC) curve, confusion matrix

1.0

False positive rate

Predicted condition

Total
Cancer Non-cancer

8+4=12 7 5
=
o Cancer
.% 6 2
: 8
)
(&)
§ Non-cancer
= 1 3
Q 4
<

Interpretability and explainability

* Interpretability: an ML model is interpretable if you can inspect the
actual model and understand why it got a particular answer for a given
input, and how the answer would change when the input changes

* Can you give some examples of interpretable ML. models?

* Explainability: an explainable model is one that can help you
understand “why was this output produced for this input?”’

Operation, monitoring, and maintenance

* Long-tail: user inputs / preferences
* Non-stationarity: on a social networks, new connections constantly form

* Machine learning tests: features, data, models, infrastructure

Lecture plan

* Forward and backward passes of neural networks in PyTorch

* Examples of neural network classifiers in PyTorch

A single input

* Forward pass: compute the output of a neural network given an input

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01,
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

12
- -
S LT T
- -

output layer Loss: — log? = 0.045
input layer

How do we get this output?

Forward pass: A single input

* Notations
« Input: vector x € R% (c.o, dy = 784)
* First trainable layer: weight matrix w; € R%0*%1 (eo d; = 100), bias b; € R%
* Activation function: : R - R
* Second trainable layer: weight matrix w, € RA1%d: (e.g., dy = 100), bias b, € R4

[ustration of forward pass

* First, apply matrix multiplication to get the input to the hidden layer:

x "wy, of size 1Xd4

input layer

[ustration of forward pass

* Next, apply an activation function
* Input to the hidden layer: x "wy, size 1Xd4

* Output of the hidden layer: o (xTwl), where g () is applied entrywise to every
coordinate of the input, size 1Xd4

input layer

[ustration of forward pass

* Next, apply matrix multiplication again
* Input to the hidden layer: x "wy, size 1Xd4
* Output of the hidden layer: o(x "wy), size 1Xd;
* Input to the output layer: o (x Twws, size 1Xd,

output layer
input layer

[lustration ot forward pass

* Finally, apply softmax to get the probability distribution over ten output
CategOfles
* Input to the hidden layer: x "wy, size 1Xd4
* Output of the hidden layer: o (x "wy), size 1Xd;
* Input to the output layer: o (x Twws, size 1Xd,
* Final output: softmax(a(x 'wy)wy)

I Softmax output [0.01, 0.9, 0.01, 0.01,
i 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

output layer
input layer

Applying tforward pass to a batch of inputs

* Repeat the steps again using matrix multiplication
e Input: matrix x € RF*% (eo. B = 128,d, = 784)

* First trainable layer — activation function — second trainable layer

Softmax [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01,
0.02, 0.01, 0.01]

p——

: Softmax [0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01,
3 ; output layer 0.01, 0.01, 0.01]

input layer

Applying tforward pass to a batch of inputs

* Intermediate outputs
* Input: x
* Input to the hidden layer: x "wy, size BXd,4
* Output of the hidden layer: o (x "wy), size BXd;4
* Input to the output layer: o (x Twws, size BXd,
* Final output: softmax(a(x 'wy)wy)

utpuf layer
input layer

Multiple layers

* Apply matrix multiplication followed by an activation function multiple times
* Input: matrix x € R%*B (c.o0. B = 128,d, = 784)
* First trainable layer: weight matrix wq € R%*d1 hias by € R%
* Activation function: 04: R = R
* i-th trainable layer: weight matrix w; € Ri-1%di Lias b; € R%

e Activation function: g;: R = R

W;/‘
B

N
e’
5

input layer

4
\
.

)

tput layer

hidden layer 1 hidden layer 2

Pseudocode for forward pass

* Input: 0¢ = x'

eFori = 1,2,...,L
* Input to layer i: z; = 0;_q1W; + b;
° Output of layer L: 0; = O'l'(Zi)

¢ Return OL

Implementation of stochastic gradient

* Calculate gradient via backpropagation (an etficient algorithm to compute
the gradient---we’ll cover this topic next lecture)

net.zero_grad() # zeroes the gradient buffers of all parameters

print(‘convl.bias.grad before backward')
print(net.convl.bias.grad)

[loss.backward()]

print(‘convl.bias.grad after backwaxd')
print(net.convl.bias.grad)

* Update the weights: Based on a learning rate parameter, we apply
stochastic gradient descent

learning_rate = 0.01

for £ in net.parameters():
f.data.sub_(f.grad.data * learning_rate)

Implementation of stochastic gradient

* Stochastic gradient descent wrapped up in pytorch codes

import torch.optim as optim

create your optimizer

optimizer = optim.SGD(net.parameters(), lr=0.01)

1in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
[optimizer.step()] # Does the update

Lecture plan

* Forward and backward passes of neural networks in PyTorch

* PyTorch implementation of neural network classifiers

Using neural networks for regression and classification

* Neural networks can be used to solve regression and classification problems
* We will consider a toy data setting for training a neural network in PyTorch

* We will use a linear classifier, then a nonlinear classifier, and compare their
results

Generating data

e Generate a two-dimensional dataset with nonlinear decision boundaries

generating some data

In [2]:
2 # dimensionality

3 # number of classes
np.Zeros *K,

100 # number of points per class]

row = single example)

y = np.zeros(NxK, dtype='uint8') # class labels
for j in range(K):
ix = range(Nxj Nx(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.lin %4, (j+1)*4,N) + np.random.randn(N)*0.2 # theta
! X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
ylix] = j

lets visualize the data:
plt.scatter(X[:, @], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()

Visualization

1.00 - e
0.75 A o ¢
o

0.50 1 .’~.

0.25 A .‘;‘

0.00 - = .. 3 \.
0251 ® 38‘.' ‘.
sl 8 W0 o

* L
075 - 'o.“‘W

-1.00 -0.75 -050 -025 000 025 050

100

Initialization

* Initialization: Every entry of W is drawn from a standard Gaussian with
mean zero and variance one

* D: input dimension
e K: number of classes

* W: classifier parameters

Initialize the parameters

In [3]: # initialize parameters randoml
(w 0.01 x np.random.rananD;Ki '
n

b p.zeros((1,K))

step_size = le-0
reg = le-3

Matrix multiplication

e X: dimension 300X2
* /. dimension 2X3
e b: dimension 1X3

Compute the output

In [4]: # compute class scores for a linear classifier
| scores = X @W + b]

T

Adds b into every row of X @ W (means matrix multiplication in numpy)

lL.oss function

* Training loss: Averaged cross-entropy loss plus an €, penalty

* Averaged cross-entropy loss (average over training dataset)
* Given a prediction for every label y € {1,2, ..., K}, let u be this vector

POy Faer: £(u) = 0)

ey exp(wy)

e f(u) = —logZ

* {5 penalty: Sum of squared values of W and b

Cross-entropy loss + €, penalty

num_examples = X.shape[0]

get unnormalized probabilities

exp_scores = np.exp(scores)

normalize them for each example

probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)

correct_logprobs = -np.log(probs[range(num_examples),yl)

compute the loss: average cross—-entropy loss and regularization
data_loss = np.sum(correct_logprobs)/num_examples

reg_loss = 0.5%reg*np.sum(WxW)

loss = data_loss + reg_loss

Compute gradient

* Notations
* Uy: output for label k
Dk: softmax probability for label k

£(W,b): cross-entropy loss
de(W,b) 3¢ du

* Chain rule: = —" optional
ow — ou aw optiona)
. d0f du .
* Claim: — = —1y—p,— = X" (optional
auk pk y—k> ow (p >
Compute the analytic gradient
In [8]: dscores = probs
dscores [range(num_examples),y] -= 1|
dscores /= num_examples
Gradient on bias adds up Ldw = X.T @ dscores]

I the 1 babiliti > (b = np.sum(dscores, axis=0, keepdims=True)
all the log probabilities dW += regxW # don't forget the regularization gradient

Compute the gradient
* Gradient of €, penalty (weight decay)

In [8]: dscores = probs
dscores [range(num_examples),y] -= 1
dscores /= num_examples

dWw = X.T @ dscores
db = np.sum(dscores, axis=0, keepdims=True)
dW += reg*W # don't forget the regularization gradient

iteration 10: loss 0.9134056496088602
iteration 20: loss 0.8323889971607258

° {1 iteration 30: loss 0.7955967913635283

Trammg IOSS iteration 40: loss 0.7762634535759677

iteration 50: loss 0.7651042787584552
iteration 60: loss 0.7582423095449976
iteration 70: loss 0.7538293272190891
iteration 80: loss 0.7508959335854734
iteration 90: loss 0.7488963644108956
iteration 100: loss 0.7475063136555101
iteration 110: loss 0.7465247676838905
iteration 120: loss 0.7458228704214372 | 1 his is quite high for three classes:
iteration 130: loss 0.7453157377782931 1
iteration 140: loss 0.7449461859000616 — log— = 1.10
iteration 150: loss 0.7446749691022985 3

Can we do better?

* First trainable layer: weight matrix w; € RP *R bias b; € R"
* Add activation function: 0: R - R

* Add a second trainable layer: weight matrix w, € R"™K bias b, € R

Initialize the parameters

In [3]: # initialize parameters randomly
h 100 # size of hidden layer

W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))

(W2 = 0.01 * np.random.randn(h,K) J
b2 = np.zeros((1,K))

output layer

step_size = le-0 input laver
reg = le-3 P y

Compute output
* Rectified linear units (RelLU): 0(z) = max(z, 0)

UZO-(XW1+1b1)W2+1b2

Compute the output

In [4]: rmmwmwmmork
hidden_layer = np.maximum(@, np.dot(X, W) + b) # note, ReLU activation]

scores = hidden_layer @ W2 + b2

Compute gradient

* Gradient of the second layer: Similar to the linear layer case since it is
only for the cross-entropy loss. Treat the hidden layer output as input

* Gradient of the first layer uses chain rule

input layer

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

1000:
2000:
3000:
4000:
5000:
6000:
7000:
8000:
9000:

loss
loss
loss
loss
loss
loss
loss
loss
loss

(SRS UGS IS IS IS I S IS RS

output layer

.40454021503681153
.26346369806692593
.25607811374045586
.25410664245334263
.2526010149171124
.25198089929407874
.25155952434511186
.2512825150552082
.2511044228402025

10000: loss 0.2509892383094693

In [6]:

/;Vbackpropate the gradient to the parameters<\\
dscores = probs

dscores [range(num_examples),y] == 1

dscores /= num_examples

first backprop into parameters W2 and b2

dwWw2 = hidden_layer.T @ dscores
\sz = np.sum(dscores, axis=0, keepdims:True)<J/

dhidden = dscores @ W2.T

backprop the RelLU non-linearity
dhidden[hidden_layer <= 0] = 0

finally into W,b
dWw = X.T @ dhidden
db np.sum(dhidden, axis=0, keepdims=True)

Visualization

* Visualizing decision boundaries

