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What machine learning can and cannot do

• Simple tasks (mapping A to B) for which humans can easily do (e.g., in a
few seconds)

Input (A) Output (B) Application

Email Spam? (0/1) Spam filtering

Audio Text transcripts Speech recognition

English Chinese Machine translation

Ad, user info Click? (0/1) Online advertising

Image, radar info Position of  other cars Self-driving cars

Image of  phone Defect? (0/1) Visual inspection

Sequence of  words The next word Chatbot 



What machine learning can and cannot do
• Predicting the stock market price

Time 

Stock price 
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$200

$300

$400



What makes an ML problem easier
• Learning a “simple” concept: relatively easy task for a human

• Lots of  training data: mapping A to B



Self-driving car

Can do Cannot do

Stop Hitchhiker Biker turning left

1. Difficult to collect enough data
2. All possible hand gestures are very large
3. Need high accuracy



Strengths and weaknesses of  machine learning
• ML tends to work well when: learning a “simple” concept, and there is a 

lots of  training data

• ML tends to work poorly when: learning concepts from small data, and 
perform on new types of  data



Deep learning
Size

# of  bedrooms

# of  bathrooms

Latest renovation

Air conditioning

Price

(Artificial) Neural Network

𝐴 𝐵



Deep learning

• Deep learning: a much better sounding brand, but essentially interchangeable 
with neural networks
• Neural networks were originally inspired by the brain, but the details of how 

they work are almost completely unrelated to how biological brains work

(Artificial) Neural Network

𝐴 𝐵

Neuron Big mathematical equation



AI tools
• Machine learning and data science

• Deep learning / neural networks

• Other tools: Generative AI, unsupervised learning, reinforcement 
learning, graphical models, planning, knowledge graphs, reasoning, …

AI

ML

DL/NN

DS



Developing machine learning systems
1. Problem formulation: “help a user find all photos that match a specific 

term, such as Paris”

• What parts of the problem can be solved by machine learning?
• Learn a function that maps a photo to a set of  labels; then, given a label as a 

query, retrieve all photos with that label

• Types of  learning problems: supervised, unsupervised, or reinforcement learning
• Semi-supervised
• Weakly supervised



Developing machine learning systems
2. Data collection, assessment, and management
• ImageNet: over 14 million photos with ~20,000 different labels
• Crowdsourcing: data annotators team (xAI, AI trainer)

• Transfer learning: use data from another related problem

• When data are limited: data augmentation helps

• Unbalanced classes

• Outliers 



Developing machine learning systems
3. Model selection and training
• Choosing a model class

• Choosing hyperparameters

• Evaluation metrics: false positive rate (imagine building a 
system to classify spam email), receiver operating 
characteristic (ROC) curve, confusion matrix



Interpretability and explainability
• Interpretability: an ML model is interpretable if  you can inspect the 

actual model and understand why it got a particular answer for a given 
input, and how the answer would change when the input changes
• Can you give some examples of interpretable ML models?

• Explainability: an explainable model is one that can help you 
understand “why was this output produced for this input?”



Operation, monitoring, and maintenance
• Long-tail: user inputs / preferences

• Non-stationarity: on a social networks, new connections constantly form

• Machine learning tests: features, data, models, infrastructure



Lecture plan
• Forward and backward passes of  neural networks in PyTorch
• Examples of neural network classifiers in PyTorch



A single input
• Forward pass: compute the output of  a neural network given an input

Prediction over {0,1,2,3,4,5,6,7,8,9}

Softmax output [0.01, 0.9, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

Loss: − log !.#
$
= 0.045

How do we get this output?



Forward pass: A single input
• Notations
• Input: vector 𝑥 ∈ ℝ*! (e.g., 𝑑+ = 784)
• First trainable layer: weight matrix 𝑤, ∈ ℝ*!×*" (e.g., 𝑑, = 100), bias 𝑏, ∈ ℝ*"
• Activation function: 𝜎:ℝ → ℝ
• Second trainable layer: weight matrix 𝑤. ∈ ℝ*"×*# (e.g., 𝑑. = 100), bias 𝑏. ∈ ℝ*#



Illustration of  forward pass
• First, apply matrix multiplication to get the input to the hidden layer: 
𝑥!𝑤", of  size 1×𝑑"



Illustration of  forward pass
• Next, apply an activation function
• Input to the hidden layer: 𝑥/𝑤,, size 1×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), where 𝜎 ⋅ is applied entrywise to every 

coordinate of  the input, size 1×𝑑,



Illustration of  forward pass
• Next, apply matrix multiplication again
• Input to the hidden layer: 𝑥/𝑤,, size 1×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), size 1×𝑑,
• Input to the output layer: 𝜎 𝑥/𝑤, 𝑤., size 1×𝑑.



Illustration of  forward pass
• Finally, apply softmax to get the probability distribution over ten output 

categories
• Input to the hidden layer: 𝑥/𝑤,, size 1×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), size 1×𝑑,
• Input to the output layer: 𝜎 𝑥/𝑤, 𝑤., size 1×𝑑.
• Final output: softmax(𝜎 𝑥/𝑤, 𝑤.)

Softmax output [0.01, 0.9, 0.01, 0.01, 
0.01, 0.01, 0.01, 0.02, 0.01, 0.01]



Applying forward pass to a batch of  inputs
• Repeat the steps again using matrix multiplication
• Input: matrix 𝑥 ∈ ℝ0×*! (e.g., 𝐵 = 128, 𝑑+ = 784)
• First trainable layer → activation function → second trainable layer

Softmax [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.02, 0.01, 0.01]

Softmax [0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.01, 0.01, 0.01]



Applying forward pass to a batch of  inputs
• Intermediate outputs
• Input: 𝑥
• Input to the hidden layer: 𝑥/𝑤,, size 𝐵×𝑑,
• Output of  the hidden layer: 𝜎(𝑥/𝑤,), size 𝐵×𝑑,
• Input to the output layer: 𝜎 𝑥/𝑤, 𝑤., size 𝐵×𝑑.
• Final output: softmax(𝜎 𝑥/𝑤, 𝑤.)



Multiple layers
• Apply matrix multiplication followed by an activation function multiple times
• Input: matrix 𝑥 ∈ ℝ*!×0 (e.g., 𝐵 = 128, 𝑑+ = 784)
• First trainable layer: weight matrix 𝑤, ∈ ℝ*!×*" , bias 𝑏, ∈ ℝ*"
• Activation function: 𝜎,: ℝ → ℝ
• …
• 𝑖-th trainable layer: weight matrix 𝑤1 ∈ ℝ*$%"×*$ , bias 𝑏1 ∈ ℝ*$
• Activation function: 𝜎1: ℝ → ℝ
• …



Pseudocode for forward pass
• Input: 𝑜# = 𝑥!

• For 𝑖 = 1, 2, … , 𝐿
• Input to layer 𝑖: 𝑧1 = 𝑜12,𝑤1 + 𝑏1
• Output of  layer 𝑖: 𝑜1 = 𝜎1(𝑧1)

• Return 𝑜$



Implementation of  stochastic gradient
• Calculate gradient via backpropagation (an efficient algorithm to compute 

the gradient---we’ll cover this topic next lecture)

• Update the weights: Based on a learning rate parameter, we apply 
stochastic gradient descent



Implementation of  stochastic gradient
• Stochastic gradient descent wrapped up in pytorch codes



Lecture plan
• Forward and backward passes of  neural networks in PyTorch
• PyTorch implementation of  neural network classifiers



Using neural networks for regression and classification
• Neural networks can be used to solve regression and classification problems

• We will consider a toy data setting for training a neural network in PyTorch

• We will use a linear classifier, then a nonlinear classifier, and compare their 
results



Generating data
• Generate a two-dimensional dataset with nonlinear decision boundaries



Visualization



Initialization
• Initialization: Every entry of  𝑊 is drawn from a standard Gaussian with 

mean zero and variance one
• 𝐷: input dimension
• 𝐾: number of  classes
• 𝑊: classifier parameters



Matrix multiplication
• 𝑋: dimension 300×2
• 𝑊: dimension 2×3
• 𝑏: dimension 1×3

Adds 𝑏 into every row of  𝑋 @𝑊 (means matrix multiplication in numpy)



Loss function
• Training loss: Averaged cross-entropy loss plus an ℓ% penalty

• Averaged cross-entropy loss (average over training dataset)
• Given a prediction for every label 𝑦 ∈ {1,2, … , 𝐾}, let 𝑢 be this vector

• ℓ 𝑢 = −log 789(;&)
∑$'"
( 789(;$)

(Fact: ℓ 𝑢 ≥ 0)

• ℓ𝟐 penalty: Sum of  squared values of  𝑊 and 𝑏



Cross-entropy loss + ℓ# penalty



Compute gradient
• Notations
• 𝑢>: output for label 𝑘
• 𝑝>: softmax probability for label 𝑘
• ℓ(𝑊, 𝑏): cross-entropy loss

• Chain rule: ?ℓ(A,C)?A = ?ℓ
?; ⋅

?;
?A (optional)

• Claim: ?ℓ
?;)

= 𝑝> − 1DE>, ?;
?A

= 𝑋/ (optional)

Gradient on bias adds up
all the log probabilities



Compute the gradient
• Gradient of  ℓ% penalty (weight decay)

• Training loss

This is quite high for three classes: 
− log ,F = 1.10



Can we do better?
• First trainable layer: weight matrix 𝑤" ∈ ℝ'×) , bias 𝑏" ∈ ℝ)

• Add activation function: 𝜎:ℝ → ℝ
• Add a second trainable layer: weight matrix 𝑤% ∈ ℝ)×* , bias 𝑏% ∈ ℝ*



Compute output
• Rectified linear units (ReLU): 𝜎 𝑧 = max(𝑧, 0)

𝑢 = 𝜎 𝑋𝑊" + 1 ⋅ 𝑏" 𝑊% + 1 ⋅ 𝑏%



Compute gradient
• Gradient of  the second layer: Similar to the linear layer case since it is 

only for the cross-entropy loss. Treat the hidden layer output as input
• Gradient of  the first layer uses chain rule



Visualization
• Visualizing decision boundaries


