
Introduction to Artificial Intelligence

Lecture 9: Language models II

October 2, 2025



Lecture plan

• Language models

• What is a language model (last lecture)

• Capabilities of  a language model (last lecture)

• More specifics of  modeling

• Training and adaptation



Tokenization

• Recall that a language model 𝑝 is a probability distribution over a 
sequence of  tokens where each token comes from some vocabulary, 
e.g., {the, mouse, ate, the, cheese}

• A tokenizer converts any string into a sequence of  tokens
• the mouse ate the cheese ⇒ [the, mouse, ate, the, cheese]

• Replace each word with a word vector

• Word embeddings: vectors for word representation



Word embeddings can indicate linear substructures

• Male vs. female relationship • Comparative - superlative



What makes a good tokenizer?

• Split by spaces: text.split(‘ ’)

• However, this doesn’t work for Chinese

• There are hyphenated words (e.g., fine-tuning) and contractions (e.g., don’t)

• Learning the tokenizer:

• Intuition: start with each character as its own token and combine tokens that co-
occur a lot

• Input: a training corpus (sequence of  characters)

• Procedure

• Find the pair of  elements 𝑥, 𝑥′ that co-occur the most number of  times

• Replace all occurrences of  𝑥, 𝑥′ with a new symbol 𝑥𝑥′

• Repeat



Tokenizer example

• Example

• [t, h, e, _, c, a, r], [t, h, e, _, c, a, t], [t, h, e, _, r, a, t]

• [th, e, _, c, a, r], [th, e, _, c, a, t], [th, e, _, r, a, t] (th occurs 3x)

• [the, _, c, a, r], [the, _, c, a, t], [the, _, r, a, t] (the occurs 3x)

• [the, _, ca, r], [the, _, ca, t], [the, _, r, a, t] (ca occurs 2x)



Unigram model

• Unigram model: rather than just splitting by “frequency,” a more 
“principled” approach is to define an objective function that captures 
what a good tokenization look like

• Given a sequence 𝑥1:𝐿 , a tokenization 𝑇 is a set of

𝑝 𝑥1:𝐿 =ෑ
𝑖,𝑗 ∈𝑇

𝑝(𝑥𝑖:𝑗)

• Example
• Input: ababc

• Tokenization: 𝑇 = 1,2 , 3,4 , 5,5

• Likelihood: 𝑝 𝑥1:𝐿 =
2

3
⋅
2

3
⋅
1

3

• Algorithm: optimize 𝑝 𝑥1:𝐿  and 𝑇 with alternative update (expectation-
maximization)



Encoder models

• These language models produce contextual embeddings but cannot be 
used directly to generate text

𝑥1:𝐿 ⇒ 𝜑(𝑥1:𝐿)

• The contextual embeddings can be used for classification tasks
• Example: sentiment classification

[[CLS], the, movie, was, great] ⇒ positive

• Example: natural language inference

[[CLS], all, animals, breathe, [SEP], cats, breathe] ⇒ entailment

• Contextual embeddings can depend bidirectionally on both left/right context, 
however, they cannot naturally generate completions



Decoder models

• These are the standard autoregressive language models, which given a 
prompt 𝑥1:𝑖 produces both contextual embeddings and a distribution 
over next tokens 𝑥𝑖+1

𝑥1:𝑖 ⇒ 𝜑 𝑥1:𝑖 , 𝑝 𝑥𝑖+1 𝑥𝑖
• Example: text autocomplete

[the, movie, was, [CLS]] ⇒ great

• The embeddings can only depend on the left context, but it can naturally 
generate completions



Recurrent neural networks

• The basic form of  an RNN simply computes a sequence of  hidden 
states recursively
• Process the sequence 𝑥1, … , 𝑥𝐿 left-to-right and recursively compute vectors 
ℎ1, … , ℎ𝐿

• For 𝑖 = 1,2, … , 𝐿: compute ℎ𝑖 = 𝑅𝑁𝑁 ℎ𝑖−1, 𝑥𝑖
• RNN: update hidden state ℎ based on a new observation 𝑥

• SimpleRNN: 𝜎 𝑈ℎ + 𝑉𝑥 + 𝑏

• LSTM  (long short-term memory) and GRU (gated recurrent unit)



Transformer networks

• Attention mechanism:

• For a sequence 𝑥1:𝐿 = 𝑥1, … , 𝑥𝐿  and an arbitrary query 𝑦

• A key matrix 𝑊𝑘𝑒𝑦 and query matrix 𝑊𝑞𝑢𝑒𝑟𝑦 to produce a score for every token

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑥𝑖
⊤𝑊𝑘𝑒𝑦

⊤ 𝑊𝑞𝑢𝑒𝑟𝑦𝑦

• Apply softmax to form a probability distribution over tokens
𝛼1, … , 𝛼𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒1, 𝑠𝑐𝑜𝑟𝑒2, … , 𝑠𝑐𝑜𝑟𝑒𝐿

• Then the final output is a weighted combination over the values with a value 
matrix 𝑊𝑣𝑎𝑙𝑢𝑒

෍

𝑖=1

𝐿

𝛼𝑖 𝑊𝑣𝑎𝑙𝑢𝑒𝑥𝑖



Self-attention and multi-head attention

• Multi-head attention:

[Attention(𝑥1:𝐿 , 𝑦), Attention(𝑥1:𝐿 , 𝑦), …, Attention(𝑥1:𝐿 , 𝑦)]

• In a self-attention layer, we substitute 𝑥𝑖 in for 𝑦 as the query 
argument:

[Attention(𝑥1:𝐿 , 𝑥1), Attention(𝑥1:𝐿 , 𝑥2), …, Attention(𝑥1:𝐿 , 𝑥𝐿)]

• Final output:

෍

𝑖=1

ℎ

𝑊𝑂
𝑖𝑊𝑉

𝑖𝑋 ⋅ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑋⊤ 𝑊𝐾

𝑖 ⊤
𝑊𝑄

𝑖𝑋

𝑑

• Query 𝑊𝑄, key 𝑊𝐾 , and value 𝑊𝑉 , output 𝑊𝑂



Improving training

• Residual connection: Instead of  applying function 𝑓
𝑓 𝑥1:𝐿

Apply
𝑥1:𝐿 + 𝑓 𝑥1:𝐿

• Layer normalization: Extract the mean and covariance of  the input

• Momentum: An efficient, second-order optimization method

• Adaptive gradient: adjusts learning rate automatically during training

• Positional embeddings: For each position in the sequence, add an extra 
embedding vector for that position



Lecture plan

• Language models

• What is a language model (last lecture)

• Capabilities of  a language model (last lecture)

• More specifics of  modeling

• Training and adaptation



Training objectives (decoder models)

• Recall that an autoregressive language model defines a conditional 
distribution

𝑝 𝑥𝑖|𝑥1:𝑖−1

• We first map the prefix sequence (prompt) to contextual embeddings 
𝜑 𝑥1:𝑖−1

• Apply an embedding matrix 𝐸 to obtain 𝐸𝜑 𝑥1:𝑖−1 𝑖−1

• Apply softmax to produce a distribution over 𝑥𝑖
𝑝 𝑥𝑖 𝑥1:𝑖−1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐸𝜑 𝑥1:𝑖−1 𝑖−1

• Finally, apply maximum likelihood

෍

𝑥1:𝐿

෍

𝑖=1

𝐿

− log 𝑝𝜃 𝑥𝑖|𝑥1:𝑖−1



Encoder models

• Bidirectional transformer training objective:

• Masked language modeling: Mask out a particular token, ask the model to 
predict the missing token

• Next sentence prediction: BERT is trained on pairs of  sentences concatenated. 
The goal of  next sentence prediction is to predict whether the second sentence 
follows from the first or not

• Optimization algorithms: Stochastic gradient

• Take a mini-batch of  samples

• Compute the gradient of  the objective on the mini-batch, using backpropagation

• Apply one gradient descent step with a learning rate parameter



Adapting a language model

• Language models are trained in a task-agnostic way

• Downstream tasks can be very different from language modeling on the Pile

• Natural language inference (NLI)

• Premise: I have never seen an apple that is not red

• Hypothesis: I have never seen an apple

• Correct output: Not entailment

• Ways downstream tasks can be different

• Topic shift: the downstream task is focused on a new or specific topic

• Temporal shift: the downstream task requires new knowledge that is unavailable 
during pre-training



Probing

• Train a probe (or prediction head) from the last layer representations of  
the language model to the output (e.g., class label)



Fine-tuning

• Using the entire language model parameters as the initialization or base 
model for optimization

• Usually, fine-tuning will produce a model that is fairly close to the base 
model

• Low-rank adapters and quantized adapters optimize the number of  bits 
per performance



Transfer learning

• Transfer learning: use the information learned from one task to help 
learn another task

• Example #1: building a face recognition system from open-source models plus a 
few hundred labeled examples

• Example #2: fine-tuning a pre-trained language model for solving a downstream 
text prediction task

• Multitask learning: simultaneously train a multitask learning model on 
multiple objectives



LLM alignment

• Collect human-written demonstrations of  desired behavior

• Perform supervised fine-tuning on the demonstrations

• On a set of  instructions, sample outputs from the language model for 
each instruction, then gather human preferences for which sampled 
output is most preferred

• Fine-tune the model with a specialized objective to maximize preference 
reward


