Introduction to Artificial Intelligence

Lecture 9: Language models 11

October 2, 2025

Lecture plan

* Language models
* What is a language model (last lecture)
* Capabilities of a language model (last lecture)
* More specifics of modeling

* Training and adaptation

Tokenization

* Recall that a language model p is a probability distribution over a
sequence of tokens where each token comes from some vocabulary,
e.g., {the, mouse, ate, the, cheese}

* A tokenizer converts any string into a sequence of tokens
* the mouse ate the cheese = [the, mouse, ate, the, cheese]

* Replace each word with a word vector

* Word embeddings: vectors for word representation

Word embeddings can indicate linear substructures

* Male vs. female relationship * Comparative - superlative

T T T T T T T T T T T 05
0.5+ 1 heiress . _ _ — —slowest
; =
041 L i
| 5 e
0.4 - e =
- I . “slower _ _ _ _ — — —-shortest
HICE I - countess 7 oy S S A
0.3 *aunt | /- duchess- 03k » “ shorter o
Téister‘ | / slow« -
| | | / : 4 g
" | @
0.2 : o ’ i 2 empress aHom
| | | / ¥ 02+ -
T Iy | i B madam t g -
by el / ///
| eir / y
oF { nephaw / ;4 - 0.1 .
| | / / /
| l ; woman ; il
-0.1F | uncle I / rquean /] Sie
! brother ! / ! /4 duke o , 7 stronger TR e strongest 7
-0.2} I / I . s
/ Vs B Py P S
: : : AT MUAEE T T T e s i ~ loudest
/ / | {emperor strong ¢ _
03 : ’ - -0.1F lou o e ey ST S =
/l / [5 B cf:learer T~ T T = — — —clearest
“softer T T T — — — — - _ _
_0.4- / / | . i < — = — — - softest
. P
! Lsir ' -0.2- clearj/:/'aafke?*‘——“_____ﬂd i]
05+ {man king - soft © -~ QoS!
dark ~
I 1 1 ! I 1 1 | 1 ! I -0.3 1 | ! | 1 1 ! | !
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 04 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

What makes a good tokenizer?
* Split by spaces: text.split(‘)

* However, this doesn’t work for Chinese
* There are hyphenated words (e.g., fine-tuning) and contractions (e.g., don’t)

* Learning the tokenizer:
* Intuition: start with each character as its own token and combine tokens that co-
occur a lot
* Input: a training corpus (sequence of characters)
* Procedure

* Find the pair of elements X, X that co-occur the most number of times
* Replace all occurrences of x, x' with a new symbol xx’

* Repeat

Tokenizer example

* Example

_t) h) e) —) C) a) r]) [t) h) e)) C) a) t]) [t) h) e)) r) a) t]
th, e, _,c a, 1], [thye, _, ¢ a,t][th e _, 1 a,t] (th occurs 3x)
the, _, ¢, a, 1], [the, _, ¢, a, t], [the, _, 1, a, t] (the occurs 3x)

the, _, ca, 1], [the, _, ca, t], [the, _, 1, a, t] (ca occurs 2x)

Unigram model

* Unigram model: rather than just splitting by “frequency,” a more
“principled” approach is to define an objective function that captures
what a good tokenization look like

* Given a sequence Xq.;, a tokenization T is a set of

p(xq1,) = 1_[N p(x.j)
(i,j)ET

* Example

* Input: ababc
e Tokenization: T = {(1,2),(3,4),(5,5)}

d LikelihOOd: p(xl:L) = E . 5 . E

* Algorithm: optimize p(x;.;) and T with alternative update (expectation-
maximization)

Encoder models

* These language models produce contextual embeddings but cannot be
used directly to generate text

X1:.L = QO(Xl:L)
* The contextual embeddings can be used for classification tasks
* Example: sentiment classification
[[CLS], the, movie, was, great] = positive
* Example: natural language inference

[[CLS], all, animals, breathe, [SEP], cats, breathe] = entailment

* Contextual embeddings can depend bidirectionally on both left/right context,
however, they cannot naturally generate completions

Decoder models

* These are the standard autoregressive language models, which given a
prompt Xq.; produces both contextual embeddings and a distribution
over next tokens X;j4q

X1 = @1), P41 lx;)
* Example: text autocomplete
[the, movie, was, [CLS]] = great

* The embeddings can only depend on the left context, but it can naturally
generate completions

Recurrent neural networks

* The basic form of an RNN simply computes a sequence of hidden
states recursively

* Process the sequence Xy, ..., Xj, left-to-right and recursively compute vectors
hy, ..., hg

* Fori = 1,2, ...,L: compute h; = RNN(h;_1, x;)

* RNN: update hidden state h based on a new observation X

* SimpleRNN: ¢(Uh + Vx + b)
* LSTM (long short-term memory) and GRU (gated recurrent unit)

Transformer networks

* Attention mechanism:
* For a sequence Xq., = |Xxq, ..., X1] and an atbitrary query y
* A key matrix Wiy,,, and query matrix Wiy ery to produce a score for every token
score; = x{ WiteyWaueryy
* Apply softmax to form a probability distribution over tokens
laq, ..., a;] = softmax(scoreq, score,, ...,score;)

* Then the final outputis a Weighted combination over the values with a value

L

z ai(anluexi)

i=1

Self-attention and multi-head attention

* Multi-head attention:
[Attention(X4.;, V), Attention(Xq.1,Y), - .., Attention(xq.r, y)]

* In a self-attention layer, we substitute X; in for y as the query
argument:

[AttCIltiOﬁ(xl:L, X1>, Att@ﬁtiOﬂ(Xl:L, XZ>, cees AttCﬂtiOﬂ(Xl:L, xL>]

* Final output:

h
Z WEWEX - softmax (
i=1

XT(W,Q')TW(SX)
Vd
* Query Wy, key Wi, and value Wy, output Wy,

Improving training
* Residual connection: Instead of applying function f
f (xl:L)

Apply
X1:L + f(xl:L)

* Layer normalization: Extract the mean and covariance of the input
* Momentum: An efficient, second-order optimization method
* Adaptive gradient: adjusts learning rate automatically during training

* Positional embeddings: For each position in the sequence, add an extra
embedding vector for that position

Lecture plan

* Language models
* What is a language model (last lecture)
* Capabilities of a language model (last lecture)
* More specifics of modeling
* Training and adaptation

Training objectives (decoder models)

* Recall that an autoregressive language model defines a conditional

distribution
p(x;|x1:i-1)
* We first map the prefix sequence (prompt) to contextual embeddings
@ (x1:4-1)

* Apply an embedding mattix E to obtain EQ(X1.;_1)i—1

* Apply softmax to produce a distribution over X;
p(x;i|x1.4-1) = softmax(E@(xq:i-1)i-1)
* Finally, apply maximum likelihood

> 2 ~ log(pe (x;l1,-1))

lel

Encoder models

* Bidirectional transformer training objective:

* Masked language modeling: Mask out a particular token, ask the model to
predict the missing token

* Next sentence prediction: BERT is trained on pairs of sentences concatenated.
The goal of next sentence prediction is to predict whether the second sentence
follows from the first or not

* Optimization algorithms: Stochastic gradient
* Take a mini-batch of samples
* Compute the gradient of the objective on the mini-batch, using backpropagation

* Apply one gradient descent step with a learning rate parameter

Adapting a language model

* Language models are trained in a task-agnostic way

* Downstream tasks can be very different from language modeling on the Pile

* Natural language inference (NLI)
* Premise: I have never seen an apple that is not red
* Hypothesis: I have never seen an apple
* Correct output: Not entailment

* Ways downstream tasks can be different
* Topic shift: the downstream task is focused on a new or specific topic

* Temporal shift: the downstream task requires new knowledge that is unavailable
during pre-training

Probing

* Train a probe (or prediction head) from the last layer representations of
the language model to the output (e.g., class label)

Prediction

Embed Embed Embed Embed Embed Embed
CLS 1 2 3 4 5

4 4 4 4 4 4

4 4 4 4 4 4

(o) () () (2} e} (]

Fine-tuning
* Using the entire language model parameters as the initialization or base

model for optimization

* Usually, fine-tuning will produce a model that is fairly close to the base
model

* Low-rank adapters and quantized adapters optimize the number of bits
per performance

Transfer learning

* Transfer learning: use the information learned from one task to help
learn another task

* Example #1: building a face recognition system from open-source models plus a
few hundred labeled examples

* Example #2: fine-tuning a pre-trained language model for solving a downstream
text prediction task

* Multitask learning: simultaneously train a multitask learning model on
multiple objectives

LILM alighment

e Collect human-written demonstrations of desired behavior
* Perform supervised fine-tuning on the demonstrations

* On a set of instructions, sample outputs from the language model for
each instruction, then gather human preferences for which sampled
output is most preterred

* Fine-tune the model with a specialized objective to maximize preference
reward

