Introduction to Artificial Intelligence

Lecture 9: Language models II

October 2, 2025

Lecture plan

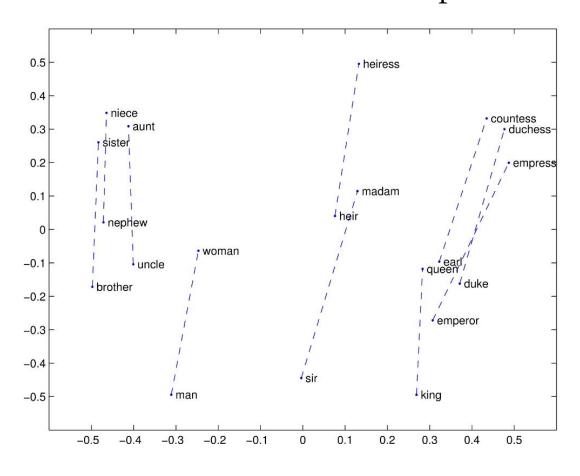
- Language models
 - What is a language model (last lecture)
 - Capabilities of a language model (last lecture)
 - More specifics of modeling
 - Training and adaptation

Tokenization

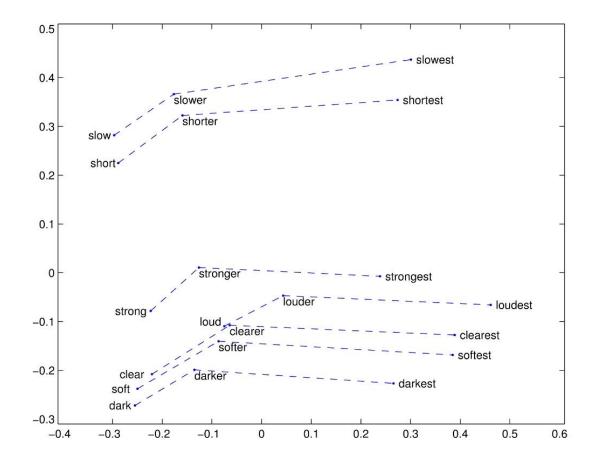
- Recall that a language model *p* is a probability distribution over a **sequence of tokens** where each token comes from some vocabulary, e.g., {the, mouse, ate, the, cheese}
- A tokenizer converts any string into a sequence of tokens
 - the mouse ate the cheese \Rightarrow [the, mouse, ate, the, cheese]
 - Replace each word with a word vector
- Word embeddings: vectors for word representation

Word embeddings can indicate linear substructures

• Male vs. female relationship



• Comparative - superlative



What makes a good tokenizer?

- Split by spaces: text.split('')
 - However, this doesn't work for Chinese
 - There are hyphenated words (e.g., fine-tuning) and contractions (e.g., don't)

• Learning the tokenizer:

- **Intuition**: start with each character as its own token and combine tokens that coocur a lot
- Input: a training corpus (sequence of characters)
- Procedure
 - Find the pair of elements x, x' that co-occur the most number of times
 - Replace all occurrences of x, x' with a new symbol xx'
 - Repeat

Tokenizer example

- Example
 - [t, h, e, _, c, a, r], [t, h, e, _, c, a, t], [t, h, e, _, r, a, t]
 - [th, e, _, c, a, r], [th, e, _, c, a, t], [th, e, _, r, a, t] (th occurs 3x)
 - [the, _, c, a, r], [the, _, c, a, t], [the, _, r, a, t] (the occurs 3x)
 - [the, _, ca, r], [the, _, ca, t], [the, _, r, a, t] (ca occurs 2x)

Unigram model

- **Unigram model**: rather than just splitting by "frequency," a more "principled" approach is to define an objective function that captures what a good tokenization look like
 - Given a sequence $x_{1:L}$, a tokenization T is a set of

$$p(x_{1:L}) = \prod_{(i,j)\in T} p(x_{i:j})$$

- Example
 - Input: ababc
 - Tokenization: $T = \{(1,2), (3,4), (5,5)\}$
 - Likelihood: $p(x_{1:L}) = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}$
- **Algorithm**: optimize $p(x_{1:L})$ and T with alternative update (expectation-maximization)

Encoder models

• These language models produce contextual embeddings but cannot be used directly to generate text

$$x_{1:L} \Rightarrow \varphi(x_{1:L})$$

- The contextual embeddings can be used for classification tasks
 - Example: sentiment classification

[[CLS], the, movie, was, great] \Rightarrow positive

- Example: **natural language inference**[[CLS], all, animals, breathe, [SEP], cats, breathe] ⇒ entailment
- Contextual embeddings can depend **bidirectionally** on both left/right context, however, they cannot naturally **generate** completions

Decoder models

• These are the standard **autoregressive language models**, which given a prompt $x_{1:i}$ produces both contextual embeddings and a distribution over next tokens x_{i+1}

$$x_{1:i} \Rightarrow \varphi(x_{1:i}), p(x_{i+1}|x_i)$$

• Example: text autocomplete

[the, movie, was, [CLS]]
$$\Rightarrow$$
 great

• The embeddings can only depend on the left context, but it can naturally **generate** completions

Recurrent neural networks

- The basic form of an RNN simply computes a sequence of **hidden** states recursively
 - Process the sequence $x_1, ..., x_L$ left-to-right and recursively compute vectors $h_1, ..., h_L$
 - For i = 1, 2, ..., L: compute $h_i = RNN(h_{i-1}, x_i)$
 - RNN: update hidden state h based on a new observation x
 - SimpleRNN: $\sigma(Uh + Vx + b)$
 - LSTM (long short-term memory) and GRU (gated recurrent unit)

Transformer networks

• Attention mechanism:

- For a sequence $x_{1:L} = [x_1, ..., x_L]$ and an arbitrary query y
- A key matrix W_{key} and query matrix W_{query} to produce a score for every token $score_i = x_i^\mathsf{T} W_{key}^\mathsf{T} W_{query} y$
- Apply softmax to form a probability distribution over tokens $[\alpha_1, ..., \alpha_L] = softmax(score_1, score_2, ..., score_L)$
- Then the final output is a weighted combination over the values with a value matrix W_{value}

$$\sum_{i=1}^{L} \alpha_i(W_{value} x_i)$$

Self-attention and multi-head attention

• Multi-head attention:

[Attention($x_{1:L}$, y), Attention($x_{1:L}$, y), ..., Attention($x_{1:L}$, y)]

• In a **self-attention layer**, we substitute x_i in for y as the query argument:

[Attention($x_{1:L}, x_1$), Attention($x_{1:L}, x_2$), ..., Attention($x_{1:L}, x_L$)]

• Final output:

$$\sum_{i=1}^{h} W_O^i W_V^i X \cdot softmax \left(\frac{X^{\top} (W_K^i)^{\top} W_Q^i X}{\sqrt{d}} \right)$$

• Query W_Q , key W_K , and value W_V , output W_Q

Improving training

• **Residual connection**: Instead of applying function f $f(x_{1:L})$

Apply

$$x_{1:L} + f(x_{1:L})$$

- Layer normalization: Extract the mean and covariance of the input
- Momentum: An efficient, second-order optimization method
- Adaptive gradient: adjusts learning rate automatically during training
- **Positional embeddings:** For each position in the sequence, add an extra embedding vector for that position

Lecture plan

- Language models
 - What is a language model (last lecture)
 - Capabilities of a language model (last lecture)
 - More specifics of modeling
 - Training and adaptation

Training objectives (decoder models)

• Recall that an autoregressive language model defines a conditional distribution

$$p(x_i|x_{1:i-1})$$

- We first map the prefix sequence (prompt) to contextual embeddings $\varphi(x_{1:i-1})$
- Apply an embedding matrix E to obtain $E\varphi(x_{1:i-1})_{i-1}$
- Apply softmax to produce a distribution over x_i $p(x_i|x_{1:i-1}) = softmax(E\varphi(x_{1:i-1})_{i-1})$
- Finally, apply maximum likelihood

$$\sum_{x_{1:I}} \sum_{i=1}^{L} -\log(p_{\theta}(x_{i}|x_{1:i-1}))$$

Encoder models

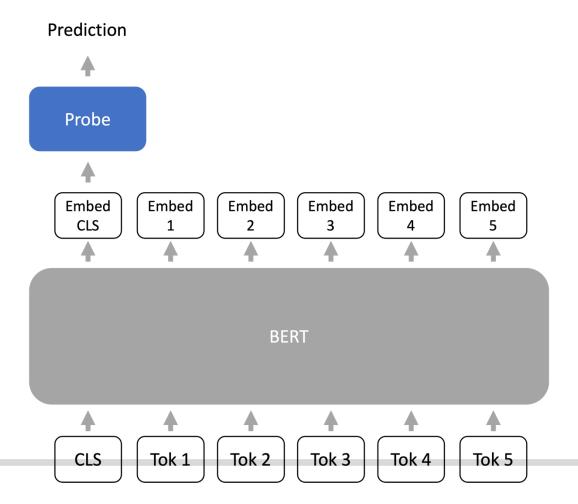
- Bidirectional transformer training objective:
 - Masked language modeling: Mask out a particular token, ask the model to predict the missing token
 - Next sentence prediction: BERT is trained on pairs of sentences concatenated. The goal of next sentence prediction is to predict whether the second sentence follows from the first or not
- Optimization algorithms: Stochastic gradient
 - Take a mini-batch of samples
 - Compute the gradient of the objective on the mini-batch, using backpropagation
 - Apply one gradient descent step with a learning rate parameter

Adapting a language model

- Language models are trained in a task-agnostic way
 - Downstream tasks can be very different from language modeling on the Pile
- Natural language inference (NLI)
 - Premise: I have never seen an apple that is not red
 - Hypothesis: I have never seen an apple
 - Correct output: Not entailment
- Ways downstream tasks can be different
 - Topic shift: the downstream task is focused on a new or specific topic
 - **Temporal shift**: the downstream task requires new knowledge that is unavailable during pre-training

Probing

• Train a probe (or prediction head) from the last layer representations of the language model to the output (e.g., class label)



Fine-tuning

• Using the entire language model parameters as the initialization or base model for optimization

• Usually, fine-tuning will produce a model that is fairly close to the base model

• Low-rank adapters and quantized adapters optimize the number of bits per performance

Transfer learning

- Transfer learning: use the information learned from one task to help learn another task
 - Example #1: building a face recognition system from open-source models plus a few hundred labeled examples
 - Example #2: fine-tuning a pre-trained language model for solving a downstream text prediction task

• Multitask learning: simultaneously train a multitask learning model on multiple objectives

LLM alignment

- Collect human-written demonstrations of desired behavior
- Perform supervised fine-tuning on the demonstrations
- On a set of instructions, sample outputs from the language model for each instruction, then gather human preferences for which sampled output is most preferred
- Fine-tune the model with a specialized objective to maximize preference reward

