Introduction to Artificial Intelligence

Lecture 11: Machine learning for natural language processing

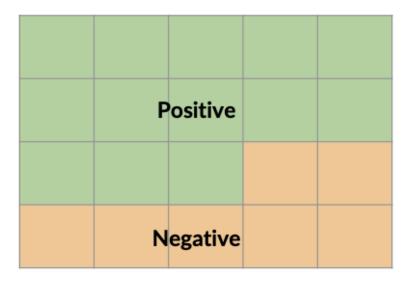
October 9, 2025

Lecture plan

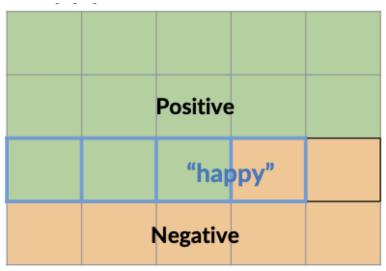
- Using machine learning for natural language processing
 - Naïve Bayes classifier
 - Logistic regression

Probabilities

Corpus of tweets

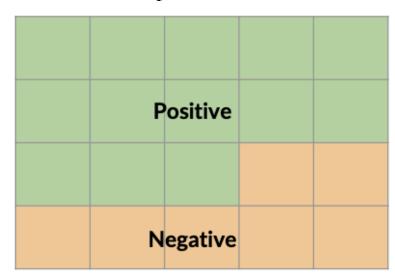


Tweets containing word "happy"



Probabilities

Corpus of tweets



A -> Positive tweet

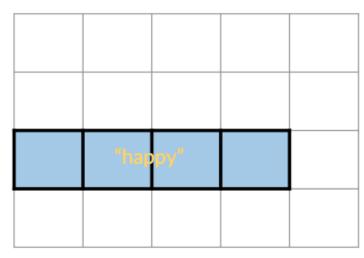
$$Pr(A) = Pr(Positive) = \frac{N_{pos}}{N}$$

$$Pr(A) = \frac{N_{pos}}{N} = \frac{13}{20} = 0.65$$

$$Pr(Negative) = 1 - Pr(Positive) = 0.35$$

Probabilities of the intersection

Tweets containing the word "happy"



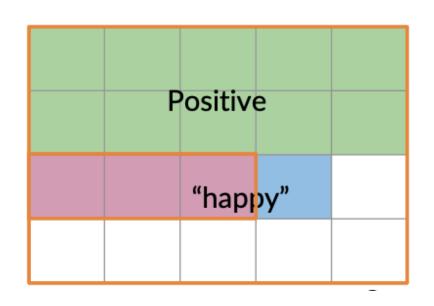
B -> tweet contains "happy"

$$Pr(B) = Pr(Happy) = \frac{N_{happy}}{N}$$

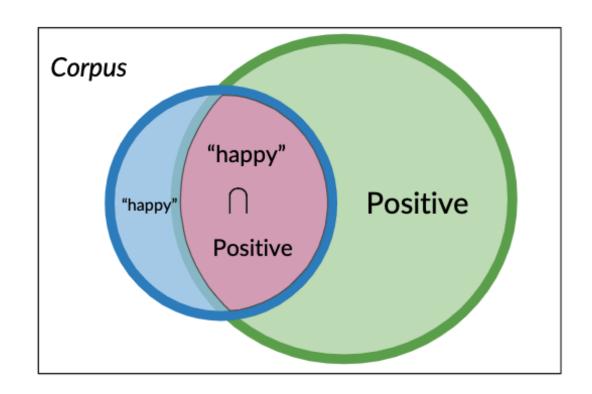
$$Pr(B) = \frac{4}{20} = 0.2$$

Conditional probabilities

• Probability of the intersection



$$Pr(A \cap B) = Pr(A, B) = \frac{3}{20} = 0.15$$



Conditional probabilities

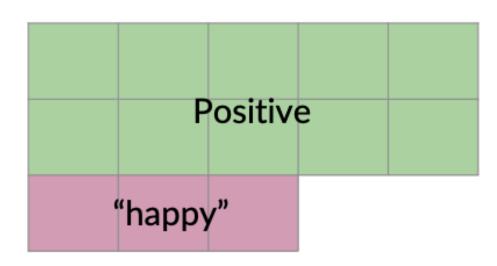
- Pr(A|B) = P(Positive | "happy")
- $Pr(A|B) = \frac{3}{4} = 0.75$

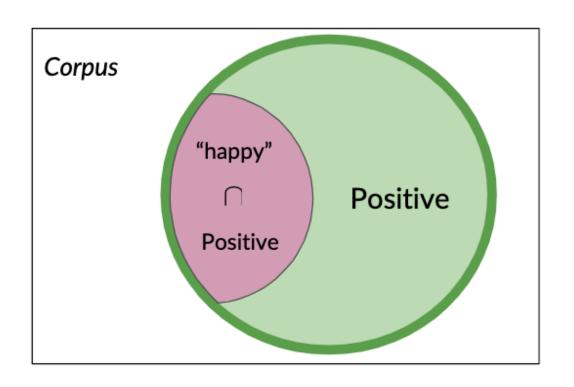
Positive "happy"



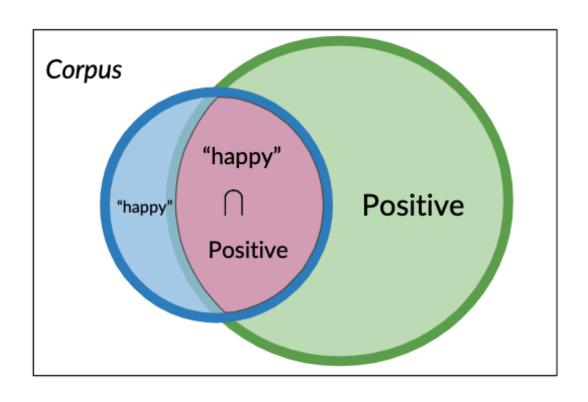
Switching the conditional probabilities

- Pr(B|A) = P(``happy'' | Positive)
- $Pr(B|A) = \frac{3}{13} = 0.231$





Bayes' rule: Combining both sides together



Pr(Positive | "happy")

= \frac{\text{Pr(Positive \(\cdot \) "happy")}}{\text{Pr("happy")}}

Bayes' rule

• Quiz: what is Pr("happy" | Positive)?

Sentiment analysis example

- Positive tweets
 - I am happy because I am learning NLP
 - I am happy, not sad
- Negative tweets
 - I am sad, I am not learning NLP
 - I am sad, not happy

word	Pos	Neg
Ι	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2

Naïve Bayes for sentiment analysis

- Normalize the occurrences
- Pr(word | class)

word	Pos	Neg
Ι	3/13	3/13
am	3/13	3/13
happy	2/13	1/13
because	1/13	0/13
learning	1/13	1/13
NLP	1/13	1/13
sad	1/13	2/13
not	1/13	2/13

Naïve Bayes for sentiment analysis

• Assumes conditional independence

$$Pr(A_1, A_2, ..., A_n|y) = Pr(A_1|y) \cdot Pr(A_2|y) \cdot ... \cdot Pr(A_n|y)$$

• Tweet: I am happy; I am learning

$$\prod_{i=1}^{6} \frac{\Pr(w_i \mid pos)}{\Pr(w_i \mid neg)} = \frac{2}{1} > 1$$

Laplacian smoothing

• Estimate the conditional probability given one hypothesis:

$$Pr(A_i|y) = \frac{count("A_i", y)}{count(w, y)}$$

• Use the add one smoothing

$$Pr(A_i|y) = \frac{count("A_i", y) + 1}{count(w, y) + U_{class}}$$

Where U_{class} is the number of unique words in class

Naïve Bayes inference

- Choose the most likely hypothesis given the list of words
 - Hypothesis y is Positive, Neural, or Negative
 - Use Bayes rule: get likelihood and prior

$$\arg\max_{y}\Pr(y\mid A_1,A_2,\ldots,A_n)=\arg\max_{y}\frac{\Pr(A_1,A_2,\ldots,A_n|y)\cdot\Pr(y)}{\Pr(A_1,\ldots,A_n)}$$

• Compare

$$\frac{\Pr(\text{pos})}{\Pr(neg)} \prod_{i=1}^{n} \frac{\Pr(w_i|pos)}{\Pr(w_i|neg)} > 1$$

• Quiz: write the inference rule in terms of log likelihood?

Training

1. Get or annotate a dataset with positive and negative tweets

2. Preprocess the tweets

3. Compute frequency of each word in every class

4. Compute conditional probability P(w | pos), P(w | neg) and prior

5. Compute log likelihood

Applications of Naïve Bayes

- Spam filtering: $\frac{\Pr(spam \mid email)}{\Pr(non-spam \mid email)}$
- Information retrieval: $Pr(doc_k \mid query) \approx \Pi Pr(query_i \mid doc_k)$

• Word disambiguation: Pr(river | text) / Pr(money | text)

Lecture plan

- Using machine learning for natural language processing
 - Naïve Bayes classifier
 - Logistic regression classifier

Vocabulary

- Tweets: [tweet_1, tweet_2, ..., tweet_m]
 - I am happy because I am learning NLP
 - I am sad, not happy

• V=[I, am, happy, because, learning, NLP, ...,sad, not]

Feature extraction

- Directly encode the tweet in the vocabulary
 - I am happy because I am learning NLP
 - V=[I, am, happy, because, learning, NLP, ...,sad, not]
- Representation: [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]

• Large representation that grows with vocabulary size -> higher training and prediction time

Word frequency in classes

- Positive tweets
 - I am happy because I am learning NLP
 - I am happy, not sad
- Negative tweets
 - I am sad, I am not learning NLP
 - I am sad, not happy
- Map every tweet to pos, neg frequencies
 - Clean unimportant information from tweets

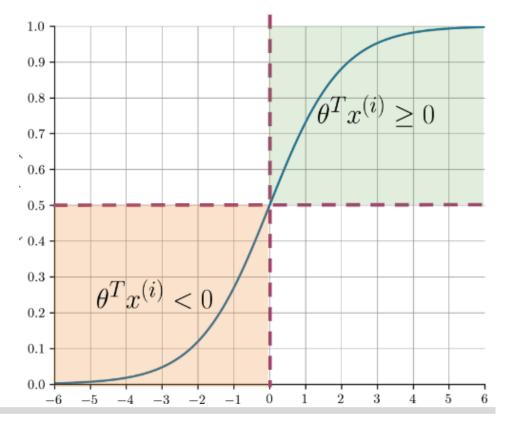
word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2

Preprocessing

- Remove stop words and punctuation
 - And, is, are, at, has, for, a
 - , . : ! " "
 - URLs
- Lowercasing: Great / GREAT -> great

Logistic regression

- Zero-one loss: Loss value is zero if predicted label is correct, is one otherwise
- Logistic loss provides an approximation of the zero-one loss
 - Stanford logistic function: $\frac{1}{1+e^{-v}}$
 - $v = \theta^{\mathsf{T}} x^{(i)}$



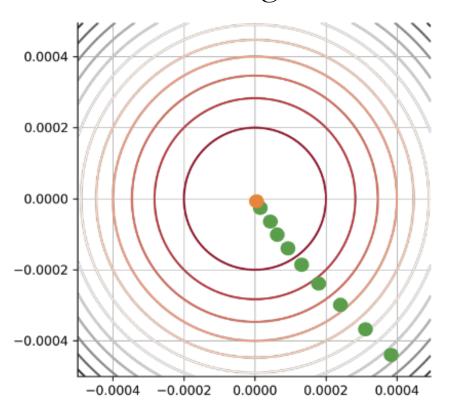
Sigmoid function

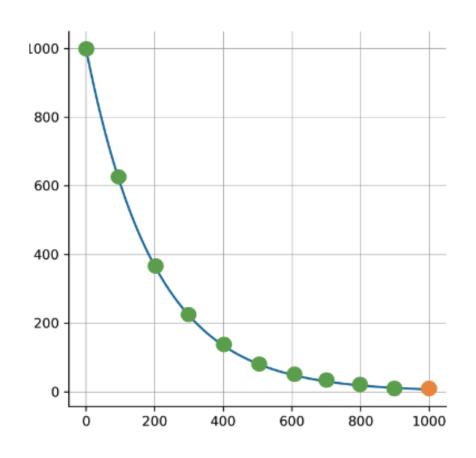
Prediction

- If $v_i > 0$, $\hat{y}_i = +1$ or positive
- If $v_i \le 0$, $\widehat{y}_i = -1$ or negatie

Training

• Use stochastic gradient descent





• Quiz: how does testing work?

Cost/objective function for logistic regression

- Suppose the labels are either +1 or -1
- The log-loss of one sample x_i, y_i is $\log(1 + \exp(-y_i \cdot v_i))$
- Averaged training loss over a dataset of size n

$$\frac{1}{n}\sum_{i=1}^{n}\log(1+\exp(-y_i\cdot v_i))$$

- Strong disagreement = high cost
- Strong agreement = low cost

