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Lecture plan

• Language models

• Training and adaptation with PyTorch implementations

• More about NLP tasks and a basic solution



Training objectives (decoder models)

• Recall that an autoregressive language model defines a conditional 
distribution

𝑝 𝑥𝑖|𝑥1:𝑖−1

• We first map the prefix sequence (prompt) to contextual embeddings 
𝜑 𝑥1:𝑖−1

• Apply an embedding matrix 𝐸 to obtain 𝐸𝜑 𝑥1:𝑖−1 𝑖−1

• Apply softmax to produce a distribution over 𝑥𝑖
𝑝 𝑥𝑖 𝑥1:𝑖−1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐸𝜑 𝑥1:𝑖−1 𝑖−1

• Finally, apply maximum likelihood
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− log 𝑝𝜃 𝑥𝑖|𝑥1:𝑖−1



Encoder models

• Bidirectional transformer training objective:

• Masked language modeling: Mask out a particular token, ask the model to 
predict the missing token

• Next sentence prediction: BERT is trained on pairs of  sentences concatenated. 
The goal of  next sentence prediction is to predict whether the second sentence 
follows from the first or not

• Optimization algorithms: Stochastic gradient

• Take a mini-batch of  samples

• Compute the gradient of  the objective on the mini-batch, using backpropagation

• Apply one gradient descent step with a learning rate parameter



Adapting a language model

• Language models are trained in a task-agnostic way

• Downstream tasks can be very different from language modeling on the Pile

• Natural language inference (NLI)

• Premise: I have never seen an apple that is not red

• Hypothesis: I have never seen an apple

• Correct output: Not entailment

• Ways downstream tasks can be different

• Topic shift: the downstream task is focused on a new or specific topic

• Temporal shift: the downstream task requires new knowledge that is unavailable 
during pre-training



Probing

• Train a probe (or prediction head) from the last layer representations of  
the language model to the output (e.g., class label)



Fine-tuning

• Using the entire language model parameters as the initialization or base 
model for optimization

• Usually, fine-tuning will produce a model that is fairly close to the base 
model

• Low-rank adapters and quantized adapters optimize the number of  bits 
per performance



Transfer learning

• Transfer learning: use the information learned from one task to help 
learn another task

• Example #1: building a face recognition system from open-source models plus a 
few hundred labeled examples

• Example #2: fine-tuning a pre-trained language model for solving a downstream 
text prediction task

• Multitask learning: simultaneously train a multitask learning model on 
multiple objectives



LLM alignment

• Collect human-written demonstrations of  desired behavior

• Perform supervised fine-tuning on the demonstrations

• On a set of  instructions, sample outputs from the language model for 
each instruction, then gather human preferences for which sampled 
output is most preferred

• Fine-tune the model with a specialized objective to maximize preference 
reward



LLM inference

LLM inference using Llama-1B model. First, install the latest package transformers

Solution: https://colab.research.google.com/drive/1ypGSozzyruZbJ5mmLek3iyX6S8N8wLSE

https://colab.research.google.com/drive/1ypGSozzyruZbJ5mmLek3iyX6S8N8wLSE


LLM inference

Then, you need to sign up a Hugging Face account and create a new token 
for logging in



LLM inference

Some models need the permission to access. We need to fill in the request 
table and load the model



LLM inference

Use model.generate( ) to generate following words given the input text



LLM inference

If  you want to access the raw output of  the model. You can use 
model(input_ids).logits



LLM fine-tuning in PyTorch

Finetuning is adapting a pretrained model to a related new task. It doesn’t 
change the model’s parameter too much. First, we need to load a model 
and use model.train( ) to put it in train mode



LLM fine-tuning in PyTorch

Then, we need to load an optimizer, such as Adam

The optimizer allows us to apply different hyperparameters for specific 
parameter groups. For example, we can apply weight decay to all parameters 
other than bias and layer normalization terms:



LLM fine-tuning in PyTorch

Now we can set up a simple dummy training batch

When we call a classification model with the labels argument, the first returned 
element is the Cross Entropy loss between the predictions and the passed labels. 
Having already set up our optimizer, we can then do a backwards pass and update 
the weights:



LLM fine-tuning in PyTorch

Alternatively, you can just get the logits and calculate the loss yourself. Use 
Cross Entropy as an example

Colab example: https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU

https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU
https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU
https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU


LLM fine-tuning in PyTorch

We can also use a simple but feature-complete training and evaluation interface 
through Trainer(). First, we need to change the data into the Dataset version.



LLM fine-tuning in PyTorch

Then we initialize the Trainer and use trainer.train( ) to fine-tune



Open-source frameworks

• Machine learning frameworks:

• PyTorch

• TensorFlow

• Hugging Face

• Scikit-learn

• R

• Research publications: Arxiv

• Open-source repositories: GitHub



CPU vs. GPU

• CPU: Central Processing Unit / Computer processor

• GPU: Graphics Processing Unit / GPU

• Cloud vs. On-premises vs. Edge



Lecture plan

• Language models

• Training and adaptation with PyTorch implementations

• More about NLP tasks and an example



Examples of  NLP tasks

Natural language processing (NLP)

• Sentiment analysis: classifying the emotional intent of  text

• Input: a piece of  text

• Output: probability that the sentiment expressed is positive, negative, or neutral



Examples of  NLP tasks

• Toxicity classification: the aim is not just to classify hostile intent but 
also to classify particular categories such as threats, insults, obscenities, 
and hatred

• Input: text

• Output: probability of  each class of  toxicity

• Useful in moderating online conversations by muting offensive 
comments, detecting hate speech, etc



Examples of  NLP tasks

• Machine translation: automatic translation between different languages

• Input: text in a specified source language

• Output: text in a specified target language

• Google translate is one successful example



Examples of  NLP tasks

• Named entity recognition (NER): extract entities in a piece of  text 
into predefined categories such as personal names, organizations, 
locations, and quantities

• Input: text

• Output: various named entities along with their start and end positions



Examples of  NLP tasks

• Spam detection: a binary classification problem, where the purpose is to 
classify emails as either spam or not
• Input: an email text along with various other subtexts like title and sender’s name

• Output: probability that the mail is spam

• Used by Gmail/Outlook to improve user experience



Examples of  NLP tasks

• Grammatical error correction: encode grammatical rules to correct the 
grammar within text
• This is a sequence-to-sequence task

• Input: an ungrammatical sentence

• Output: a correct sentence

• Grammarly and spell-checkers in word-processing systems are examples 
of  such systems



Examples

• Topic modeling: an unsupervised text mining task that takes a corpus 
of  documents and discovers abstract topics within that corpus
• Input: a collection of  documents

• Output: a list of  topics that defines words for each topic as well as assignment 
proportions of  each topic in a document

• Use cases in helping lawyers find evidence in legal documents (link)

https://www.deeplearning.ai/the-batch/order-in-the-court/?_gl=1*7prosj*_gcl_au*MTEyNzE1ODQyMy4xNzU5NzA5Mzc4*_ga*NTI4MTc5MzMyLjE3NTk3MDg4Njk.*_ga_PZF1GBS1R1*czE3NTk3MDg4NjgkbzEkZzEkdDE3NTk3MDkzNzgkajYwJGwwJGgw


Examples

• Text generation / natural language generation (NLG): produces text 
that’s similar to human-written text
• Can be fine-tuned to produce text in different genres and formats, including 

tweets, blogs, and even computer code

• Autocomplete predicts what word comes next (used in chat apps like WhatsApp)

• Chatbots automate one side of  a conversation while a human conversant 
generally supplies the other side: database query, conversation generation



Examples

• Information retrieval: finds documents that are most relevant to a 
query
• Every search and recommendation system faces this problem

• Often need to retrieve from millions of  documents (now enhanced with 
multimodal search)

https://www.deeplearning.ai/the-batch/search-goes-multimodal/?_gl=1*1rw58cz*_gcl_au*MTEyNzE1ODQyMy4xNzU5NzA5Mzc4*_ga*NTI4MTc5MzMyLjE3NTk3MDg4Njk.*_ga_PZF1GBS1R1*czE3NTk3MTgzOTIkbzIkZzAkdDE3NTk3MTg1MTgkajYwJGwwJGgw


Examples

• Summarization: shortening text to highlight the most relevant 
information
• Extractive summarization: extracts the most important sentences (e.g., by 

scoring each sentence) from a long text and combining them to form a summary

• Abstractive summarization: produces a summary by paraphrasing, usually 
modeled as a sequence-to-sequence task



Examples

• Question answering: answering questions posed by humans in a natural 
language
• Multiple choice: composed of  a question and a set of  possible answers

• Open domain: provide answers to questions in natural language without any 
options provided, often by querying a large number of  texts

• IBM Watson: https://www.ibm.com/history/watson-jeopardy

https://www.ibm.com/history/watson-jeopardy
https://www.ibm.com/history/watson-jeopardy
https://www.ibm.com/history/watson-jeopardy


Sentiment analysis with logistic regression

• Sentiment prediction: “A very busy, but rewarding first week of  the fall 
semester.” The sentence consists of  a list of  eleven words: 
{𝐴1, 𝐴2, … , 𝐴11}

• Input: a list of  (text, label) pairs

• Output: a classifier that, given an unseen text, produces the probability 
corresponding each label



Naïve Bayes

• Prediction rule: Choose the most likely hypothesis given the list of  words

• Hypothesis 𝑦 is Positive, Neural, or Negative

• Use Bayes rule: get likelihood and prior

𝐚𝐫𝐠𝐦𝐚𝐱
𝒚

𝐏𝐫 𝒚 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒚

𝐏𝐫 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏|𝒚 ⋅ 𝐏𝐫 𝒚

𝐏𝐫(𝑨𝟏, … , 𝑨𝒏)

• Naïve Bayes assumes conditional independence: Prior knowledge with a 
single word is easier to obtain

𝐏𝐫(𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏|𝒚) = 𝐏𝐫 𝑨𝟏|𝒚 ⋅ 𝐏𝐫 𝑨𝟐 𝒚 ⋅ ⋯ ⋅ 𝐏𝐫 𝑨𝒏 𝒚



Training the naïve Bayes classifier

• Apply logarithm to the above loss

• Now, estimate the condition probability given one hypothesis:

Pr 𝐴𝑖 𝑦 =
𝑐𝑜𝑢𝑛𝑡(“𝐴𝑖”, 𝑦)

𝑐𝑜𝑢𝑛𝑡 𝑤, 𝑦
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