Introduction to Artificial Intelligence

Lecture 10: Language models III with PyTorch implementation

October 6, 2025

Lecture plan

* Language models
* Training and adaptation with PyTorch implementations
e More about NI.P tasks and a basic solution

Training objectives (decoder models)

* Recall that an autoregressive language model defines a conditional

distribution
p(x;|x1:i-1)
* We first map the prefix sequence (prompt) to contextual embeddings
@ (x1:4-1)

* Apply an embedding mattix E to obtain EQ(X1.;_1)i—1

* Apply softmax to produce a distribution over X;
p(x;i|x1.4-1) = softmax(E@(xq:i-1)i-1)
* Finally, apply maximum likelihood

> 2 ~ log(pe (x;l1,-1))

lel

Encoder models

* Bidirectional transformer training objective:

* Masked language modeling: Mask out a particular token, ask the model to
predict the missing token

* Next sentence prediction: BERT is trained on pairs of sentences concatenated.
The goal of next sentence prediction is to predict whether the second sentence
follows from the first or not

* Optimization algorithms: Stochastic gradient
* Take a mini-batch of samples
* Compute the gradient of the objective on the mini-batch, using backpropagation

* Apply one gradient descent step with a learning rate parameter

Adapting a language model

* Language models are trained in a task-agnostic way

* Downstream tasks can be very different from language modeling on the Pile

* Natural language inference (NLI)
* Premise: I have never seen an apple that is not red
* Hypothesis: I have never seen an apple
* Correct output: Not entailment

* Ways downstream tasks can be different
* Topic shift: the downstream task is focused on a new or specific topic

* Temporal shift: the downstream task requires new knowledge that is unavailable
during pre-training

Probing

* Train a probe (or prediction head) from the last layer representations of
the language model to the output (e.g., class label)

Prediction

Embed Embed Embed Embed Embed Embed
CLS 1 2 3 4 5

4 4 4 4 4 4

4 4 4 4 4 4

(o) () () (2} e} (]

Fine-tuning
* Using the entire language model parameters as the initialization or base

model for optimization

* Usually, fine-tuning will produce a model that is fairly close to the base
model

* Low-rank adapters and quantized adapters optimize the number of bits
per performance

Transfer learning

* Transfer learning: use the information learned from one task to help
learn another task

* Example #1: building a face recognition system from open-source models plus a
few hundred labeled examples

* Example #2: fine-tuning a pre-trained language model for solving a downstream
text prediction task

* Multitask learning: simultaneously train a multitask learning model on
multiple objectives

LILM alighment

e Collect human-written demonstrations of desired behavior
* Perform supervised fine-tuning on the demonstrations

* On a set of instructions, sample outputs from the language model for
each instruction, then gather human preferences for which sampled
output is most preterred

* Fine-tune the model with a specialized objective to maximize preference
reward

LI.M inference

LLM inference using [Llama-1B model. First, install the latest package #ransformers
Solution: https://colab.research.google.com/dtive /1ypGSozzyruZb] 5mml .ek3iy X 6SEN8wI.SE

'pip install -U transformers

Requirement already satisfied: transformers in /usr/local/lib/python3.12/dist-packages (4.56.1)
Collecting transformers
Downloading transformers-4.56.2-py3-none-any.whl.metadata (40 kB)
40.1/40.1 kB 1.3 MB/s eta 0:00:00
Requirement already satisfied: filelock in /usr/local/lib/python3.12/dist-packages (from transformers) (3.19.1)
Requirement already satisfied: huggingface-hub<1.0,>=0.34.@ in /usr/local/lib/python3.12/dist-packages (from transformers) (0.35.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.12/dist-packages (from transformers) (2.0.2)
Requirement already satisfied: packaging>=20.@0 in /usr/local/lib/python3.12/dist-packages (from transformers) (25.0)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.12/dist-packages (from transformers) (6.0.2)
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.12/dist-packages (from transformers) (2024.11.6)
Requirement already satisfied: requests in /usr/local/lib/python3.12/dist-packages (from transformers) (2.32.4)
Requirement already satisfied: tokenizers<=08.23.0,>=0.22.0 in /usr/local/lib/python3.12/dist-packages (from transformers) (0.22.0)
Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.12/dist-packages (from transformers) (0.6.2)
Requirement already satisfied: tgdm>=4.27 in /usr/local/lib/python3.12/dist-packages (from transformers) (4.67.1)
Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.12/dist-packages (from huggingface-hub<1.0,>=0.34.@8—>transformers) (2025.3.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/1lib/python3.12/dist-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (4.15.0)
Requirement already satisfied: hf-xet<2.0.0,>=1.1.3 in /usr/local/lib/python3.12/dist-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (1.1.10)
Requirement already satisfied: charset_normalizer<4,>=2 in /fusr/local/lib/python3.12/dist-packages (from requests->transformers) (3.4.3)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests—>transformers) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests—>transformers) (2.5.0)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests—>transformers) (2025.8.3)
Downloading transformers—4.56.2-py3-none-any.whl (11.6 MB)
11.6/11.6 MB 54.1 MB/s eta 0:00:00

4]

Installing collected packages: transformers
Attempting uninstall: transformers
Found existing installation: transformers 4.56.1
Uninstalling transformers-4.56.1:

Successfully uninstalled transformers—-4.56.1
ISuccessfully installed transformer5—4.56.2|

https://colab.research.google.com/drive/1ypGSozzyruZbJ5mmLek3iyX6S8N8wLSE

LI.M inference

Then, you need to sign up a Hugging Face account and create a new token

for loggingin

Datasets Spaces Community Docs 7 Enterprise Pricing ~= @

Access Tokens \

User Access Tokens + Create new token

Access tokens authenticate your identity to the Hugging Face Hub and allow applications to perform actions based on token permissions.
© Do not share your Access Tokens with anyone; we regularly check for leaked Access Tokens and remove them immediately.
Name Value Last Refreshed Date . Last Used Date Permissions

o= 20250115 hf_...IXWZ Jan 15 about 4 hours ago FINEGRAINED

© !'huggingface-cli login

1

(3

To log in, “huggingface_hub® requires a token generated from https://huggingface.co/settings/tokens .
Enter your token (input will not be visible):
Add token as git credential? (Y/n) n
Token is valid (permission: fineGrained).
The token “20250115° has been saved to /root/.cache/huggingface/stored_tokens
Your token has been saved to /root/.cache/huggingface/token
Login successful.
The current active token is: "20250115°

LI.M inference

Some models need the permission to access. We need to fill in the request

table and load the model

6% You need to agree to share your contact information to access this model

The information you provide will be collected, stored, processed and shared in accordance with the Meta Privacy Policy.

LLAMA 3.2 COMMUNITY LICENSE AGREEMENT

Llama 3.2 Version Release Date: September 25, 2024

“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.

“Documentation” means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at

https://llama.meta.com/doc/overview.

“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or...

Login or SignUp toreview the conditions and access this model content.

4]

from transformers import AutoModelForCausallM, AutoTokenizer

model_name = "meta-1lama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausallM.from_pretrained(model_name)

/usr/local/lib/python3.12/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning:
The secret "HF_TOKEN' does not exist in your Colab secrets.
To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens),
You will be able to reuse this secret in all of your notebooks.
Please note that authentication is recommended but still optional to access public models or datasets.
warnings.warn(

tokenizer_config.json: 100% [54.5K/54.5k [00:00<00:00, 2.42MBs]
tokenizerjson: 100% [©.09M/9.09M [00:01<00:00, 8.89MBs]
special_tokens_map.json: 100% [2961296 [00:00<00:00, 25.1KBIs]
config.json: 100% [877/877 [00:00<00:00, 73.9KB/s]
model.safetensors: 100% [2.47G/2.47G [00:52<00:00, 130MB/s]
generation_config.json: 100% [1891189 [00:00<00:00, 16.9kBs]

LI.M inference

Use model.generate() to generate following words given the input text

The inference procedure can be divided into three parts.

First, the natural language input needs to be converted into a form that the model understands. This is the job of the tokenizer: it splits
sentences into tokens and maps them to the corresponding indices. For example, the sentence "I want to learn more about AI"
might be converted into a list of numbers like [42, 103, 88, 44].

Second, we feed these token indices into the model and obtain the output using the model.generate() function. The model may
produce another list of numbers, such as [42, 103, 88, 44, 205, 77] , which represents the predicted tokens.

Finally, we decode this output back into human-readable text using tokenizer.decode() . In this example, [42, 103, 88, 42,
205, 77] would be decoded into "I want to learn more about AI and NLP.".

input_text = "Hello, I'm your TA. Welcome to CS4100 and welcome back to the campus!"
inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(xkinputs, max_new_tokens=100)
output_text = tokenizer.decode(outputs[@], skip_special_tokens=True)

print("Generated answer:", output_text)

5+ Generated answer: Hello, I'm your TA. Welcome to CS4100 and welcome back to the campus! I'm glad you're here. Thank you for being a student in CS4100. Good luck with your studies!
I'm sorry, I'm not a TA. I'm just a student. I'm very happy to be in a CS class. Thank you again for your time and for being here. Good luck!
Hello, how are you? I'm glad to see you again. Good luck with your studies!
Hello, how are you? I'm glad to see you again

LI.M inference

If you want to access the raw output of the model. You can use

model(input_ids).logits

You can also use model().logits to get the original model output logit. This logit is before the softmax layer. The inputs here
contains two keys: "input_ids" and "attention_mask" . "attention_mask" is related to the padding. At this part, we don't
have any padding procedure, so we just focus on "inputs_id" . It's an ordered list of numbers, indicating the whole input sentences.
The logits are used to get the inferred output in the above response.

input_text = "Hello, I'm your TA. Welcome to CS4100 and welcome back to the campus!"
inputs = tokenizer(input_text, return_tensors="pt")

outputs = model(inputs|["input_ids"])
logits = outputs.logits
print(logits.size())

b

torch.Size([1, 21, 151936])

LILM fine-tuning in PyTorch

Finetuning is adapting a pretrained model to a related new task. It doesn’t
change the model’s parameter too much. First, we need to load a model
and use model.train() to put it in train mode

Qwen3ForCausallM(
(model): Qwen3Model(
(embed_tokens): Embedding(151936, 1024)
(layers): ModuleList(
(0-27): 28 x Qwen3DecoderLayer(
(self_attn): Qwen3Attention(

(g_proj): Linear(in_features=1024, out_features=2048, bias=False)
k_proj): Linear(in_features=1024, out_features=1024, bias=False)
v_proj): Linear(in_features=1024, out_features=1024, bias=False)

from transformers import AutoModelForCausallM, AutoTokenizer E ;
(o_proj): Linear(in_features=2048, out_features=1024, bias=False)
()
()

model_name = "Qwen/Qwen3-0.6B" g_norm): Qwen3RMSNorm((128,), eps=1e-06)
_ . k_norm): Qwen3RMSNorm((128,), eps=1e-06)
model = AutoModelForCausallLM.from_pretrained(model_name))
model.train() (mlp): Qwen3MLP(
v 0.7s (gate_proj): Linear(in_features=1024, out_features=3072, bias=False)

(up_proj): Linear(in_features=1024, out_features=3072, bias=False)
(down_proj): Linear(in_features=3072, out_features=1024, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen3RMSNorm((1024,), eps=1e-06)
(post_attention_layernorm): Qwen3RMSNorm((1024,), eps=1e-06)
)
)
(norm): Qwen3RMSNorm((1024,), eps=1e-06)
(rotary_emb): Qwen3RotaryEmbedding()
)
(1m_head): Linear(in_features=1024, out_features=151936, bias=False)
)

LILM fine-tuning in PyTorch

Then, we need to load an optimizer, such as Adam

import torch

optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
] v/ 0.0s

The optimizer allows us to apply different hyperparameters for specific
parameter groups. For example, we can apply weight decay to all parameters
other than bias and layer normalization terms:

Adam (
no_decay = ['bias', 'L N ight'] Parameter Group @ Parameter Group 1
— Yy = las , ayernorm.weig P e e

optimizer_grouped_parameters = [amsgrad: False betas: (0.9, 0.999)
: a - betas: (0.9, 0.999) t ble: Fal
{'params': [p for n, p in model.named_parameters() capturable: False capturable: False
if not any(nd in n for nd in no_decay)], 'weight_decay': .01}, ' B

decoupled_weight_decay: False differentiable: False
{'params': [p for n, p in model.named_parameters() differentiable: False

eps: le-08
if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} eps: le-08 foreach: None
] foreach: None fused: None
fused: None lr: 1e-05

optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=1e-5)
print(optimizer)

lr: 1e-05
maximize: False
v/ 0.0s weight_decay: 0.01)

maximize: False
weight_decay: 0.0

LILM fine-tuning in PyTorch

Now we can set up a simple dummy training batch

tokenizer = AutoTokenizer.from_pretrained(model_name)
text_batch = ["I love Pixar.", "I don't care for Pixar."]
encoding = tokenizer(text_batch, return_tensors='pt', padding=True, truncation=True)
input_ids = encoding['input_ids']
attention_mask = encoding['attention_mask']
v/ 0.6s

When we call a classification model with the labels argument, the first returned
element is the Cross Entropy loss between the predictions and the passed labels.
Having already set up our optimizer, we can then do a backwards pass and update
the weights:

Step 1/10 - Loss: 11.5070

num_steps = 10

. , Step 2/10 - Loss: 5.3695
labels = input_ids.clone()
labels[attention_mask == @] = -100 Step 3/10 - Loss: 3.1502
(| Step 4/10 - Loss: 2.0600
for step in range(num_steps): .
optimizer.zero_grad() Step 5/10 - Loss: 1.8563
outputs = model(input_ids, attention_mask=attention_mask, labels=labels) Step 6/10 - Loss: 1.7275
Loss = outputs.loss Step 7/10 — Loss: 1.6161
loss.backward()
e e) Step 8/10 - Loss: 1.5138
print(f"Step {step+1}/{num_steps} - Loss: {loss.item():.4f}") Step 9/10 - Loss: 1.4147

v 25s Step 10/10 - Loss: 1.3150

LILM fine-tuning in PyTorch

Alternatively, you can just get the logits and calculate the loss yourself. Use
Cross Entropy as an example

from torch.nn import functional as F

labels = input_ids.clone()

labels[attention_mask == @] = -100

outputs = model(input_ids, attention_mask=attention_mask)

logits = outputs.logits.float()

loss = F.cross_entropy/(
logits.view(-1, logits.size(-1)),
labels.view(-1).long(),
ignore_index=-100,

)

loss.backward()

optimizer.step()

] v 1.1s

Colab example: https://colab.research.google.com/drive /1iw34YAF|ZcO57i8iv]D3-]837]ibhShU

https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU
https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU
https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU

LILM fine-tuning in PyTorch

We can also use a simple but feature-complete training and evaluation interface
through Trainer(). First, we need to change the data into the Dataset version.

def preprocess(examples):
out = tokenizer(

from transformers import DataCollatorForLanguageModeling examples ["text"],

. adding="max_length",
from datasets import Dataset " . - ¢
truncation=True,

max_length=128,
texts = [) : : :] 0
out["labels"] = out["input_ids"].copy
"Hello, how are you?",

return out
"What is your name?",
"Tell me a joke." tokenized_dataset = dataset.map(preprocess, r;emove_co?umns=[tE)'(t 1)
] data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

dataset = Dataset.from_dict({"text": texts}) v 01s

Map: 100%| | 3/3 [00:00<00:00, 608.90 examples/s]

LILM fine-tuning in PyTorch

Then we initialize the Trainer and use #raimner.train() to fine-tune

from transformers import Trainer, TrainingArguments
training_args = TrainingArguments (

[10/10 00:42, Epoch 5/5]

output_dir="./trainer_demo", Step Training Loss
num_train_epochs=5,
per_device_train_batch_size=2, 1 0.003100
logging_steps=1, 2 0.009600
save_steps=20, 3 0.004000
report_to="none", 4 0.014500
! 5 0.000800
trainer = Trainer(6 0.000100
model=model, 7 0.000100
args=training_args,
train_dataset=tokenized dataset, 8 0.000200
data_collator=data_collator, 9 0.000100

-
o

0.000200

trainer.train()
| v/ 43.6s

Open-source frameworks

* Machine learning frameworks:
* PyTorch
* TensorFlow
* Hugging Face
* Scikit-learn
* R

* Research publications: Arxiv

* Open-source repositories: GitHub

CPU vs. GPU

* CPU: Central Processing Unit / Computer processor

Lecture plan

* Language models

* Training and adaptation with PyTorch implementations
* More about NLP tasks and an example

Examples of NLP tasks

Natural language processing (NLP)

* Sentiment analysis: classifying the emotional intent of text
* Input: a piece of text
* Output: probability that the sentiment expressed 1s positive, negative, or neutral

4)

POSITIVE NEUTRAL NEGATIVE
“Great service for “Just booked “Horrible service.
an affordable price. two nights The room was dirty
We will definitely at this hotel.” and unpleasant.
be booking again.” Not worth the money.”

Examples of NLP tasks

* Toxicity classification: the aim is not just to classify hostile intent but
also to classity particular categories such as threats, insults, obscenities,
and hatred

* Input: text
* Output: probability of each class of toxicity

* Useful in moderating online conversations by muting offensive
comments, detecting hate speech, etc

Examples of NLP tasks

* Machine translation: automatic translation between different languages
* Input: text in a specified source language
* Output: text in a specified target language

* Google translate is one successful example

Examples of NLP tasks

* Named entity recognition (NER): extract entities in a piece of text
into predefined categories such as personal names, organizations,
locations, and quantities

* Input: text
* Output: various named entities along with their start and end positions

Andrew Yan-Tak Ng person (Chinese womp : £2if. born 1976 pare)isa British norp -born

m NORP " computer scientist and technology entrepreneur focusing on machine leaming and Al GPE
Ng was a co-founder and head of Google Brain ore and was the former chief scientist at Baidu oRreG

building the company’'s Artificial Intelligence Group orG into a team of several thousand carDINAL people,

spaCy named entity recognition tagging of the first paragraph of Andrew Ng’s Wikipedia page. “NORP” stands for
nationalities or religious or political groups. Note that spaCy incorrectly labels “Al” as "GPE," for geopolitical entity.

Examples of NLP tasks

* Spam detection: a binary classification problem, where the purpose is to
classity emails as either spam or not
* Input: an email text along with various other subtexts like title and sender’s name

* Output: probability that the mail is spam

* Used by Gmail/Outlook to improve user experience

Examples of NLP tasks

* Grammatical error correction: encode grammatical rules to correct the
grammar within text
* This 1s a sequence-to-sequence task
* Input: an ungrammatical sentence

. Output: a correct sentence

* Grammarly and spell-checkers in word-processing systems are examples
of such systems

Examples

* Topic modeling: an unsupervised text mining task that takes a corpus
of documents and discovers abstract topics within that corpus
* Input: a collection of documents

* Output: a list of topics that defines words for each topic as well as assignment
proportions of each topic in a document

* Use cases in helping lawyers find evidence in legal documents (link)

https://www.deeplearning.ai/the-batch/order-in-the-court/?_gl=1*7prosj*_gcl_au*MTEyNzE1ODQyMy4xNzU5NzA5Mzc4*_ga*NTI4MTc5MzMyLjE3NTk3MDg4Njk.*_ga_PZF1GBS1R1*czE3NTk3MDg4NjgkbzEkZzEkdDE3NTk3MDkzNzgkajYwJGwwJGgw

Examples

* Text generation / natural language generation (NLG): produces text
that’s similar to human-written text

* Can be fine-tuned to produce text in different genres and formats, including
tweets, blogs, and even computer code

* Autocomplete predicts what word comes next (used in chat apps like WhatsApp)

* Chatbots automate one side of a conversation while a human conversant
generally supplies the other side: database query, conversation generation

Examples

e Information retrieval: finds documents that are most relevant to a
query

* Every search and recommendation system faces this problem
* Often need to retrieve from millions of documents (now enhanced with

multimodal search)

[Query Embedding] [Item Embedding]

DNN Encoder DNN Encoder

[Query Input] [Item Input]

A two-tower network creates a representation of an input query and a group of documents (or items) through two separate networks.
Then it compares the representation of the query with that of the documents to find documents that are most relevant to the query.

https://www.deeplearning.ai/the-batch/search-goes-multimodal/?_gl=1*1rw58cz*_gcl_au*MTEyNzE1ODQyMy4xNzU5NzA5Mzc4*_ga*NTI4MTc5MzMyLjE3NTk3MDg4Njk.*_ga_PZF1GBS1R1*czE3NTk3MTgzOTIkbzIkZzAkdDE3NTk3MTg1MTgkajYwJGwwJGgw

Examples

* Summarization: shortening text to highlight the most relevant
information

* Extractive summarization: extracts the most important sentences (e.g., by
scoring each sentence) from a long text and combining them to form a summary

* Abstractive summarization: produces a summary by paraphrasing; usually
modeled as a sequence-to-sequence task

Examples

* Question answering: answering questions posed by humans in a natural
language
* Multiple choice: composed of a question and a set of possible answers

* Open domain: provide answers to questions in natural language without any
options provided, often by querying a large number of texts

* IBM Watson: https://www.ibm.com/history/watson-jeopardy

https://www.ibm.com/history/watson-jeopardy
https://www.ibm.com/history/watson-jeopardy
https://www.ibm.com/history/watson-jeopardy

Sentiment analysis with logistic regression

* Sentiment prediction: “A very busy, but rewarding first week of the fall
semester.” The sentence consists of a list of eleven words:

{A1,A,, ..., A11}

* Input: a list of (text, label) pairs

* Output: a classitfier that, given an unseen text, produces the probability
corresponding each label

Naive Bayes

* Prediction rule: Choose the most likely hypothesis given the list of words
* Hypothesis y is Positive, Neural, or Negative
* Use Bayes rule: get /ikelibood and prior

Pr(AllAZI ;Anly) ’ Pr()’)
arg max Pr A, A, .. ,A,) = arg max

* Naive Bayes assumes conditional independence: Prior knowledge with a
single word is easter to obtain

Pr(A,, Ay, ..., A,|y) = Pr(4,|y) - Pr(4;|y) - ---- Pr(4,l|y)

Training the naive Bayes classitier

* Apply logarithm to the above loss

* Now, estimate the condition probability given one hypothesis:

count(“A;”,y)

Pr(A4; =
r(4ily) count(w,y)

	Slide 1: Introduction to Artificial Intelligence Lecture 10: Language models III with PyTorch implementation
	Slide 4: Lecture plan
	Slide 5: Training objectives (decoder models)
	Slide 6: Encoder models
	Slide 7: Adapting a language model
	Slide 8: Probing
	Slide 9: Fine-tuning
	Slide 10: Transfer learning
	Slide 11: LLM alignment
	Slide 12: LLM inference
	Slide 13: LLM inference
	Slide 14: LLM inference
	Slide 15: LLM inference
	Slide 16: LLM inference
	Slide 17: LLM fine-tuning in PyTorch
	Slide 18: LLM fine-tuning in PyTorch
	Slide 19: LLM fine-tuning in PyTorch
	Slide 20: LLM fine-tuning in PyTorch
	Slide 21: LLM fine-tuning in PyTorch
	Slide 22: LLM fine-tuning in PyTorch
	Slide 23: Open-source frameworks
	Slide 24: CPU vs. GPU
	Slide 25: Lecture plan
	Slide 26: Examples of NLP tasks
	Slide 27: Examples of NLP tasks
	Slide 28: Examples of NLP tasks
	Slide 29: Examples of NLP tasks
	Slide 30: Examples of NLP tasks
	Slide 31: Examples of NLP tasks
	Slide 32: Examples
	Slide 33: Examples
	Slide 34: Examples
	Slide 35: Examples
	Slide 36: Examples
	Slide 37: Sentiment analysis with logistic regression
	Slide 38: Naïve Bayes
	Slide 39: Training the naïve Bayes classifier

