
Introduction to Artificial Intelligence

Lecture 10: Language models III with PyTorch implementation

October 6, 2025

Lecture plan

• Language models

• Training and adaptation with PyTorch implementations

• More about NLP tasks and a basic solution

Training objectives (decoder models)

• Recall that an autoregressive language model defines a conditional
distribution

𝑝 𝑥𝑖|𝑥1:𝑖−1

• We first map the prefix sequence (prompt) to contextual embeddings
𝜑 𝑥1:𝑖−1

• Apply an embedding matrix 𝐸 to obtain 𝐸𝜑 𝑥1:𝑖−1 𝑖−1

• Apply softmax to produce a distribution over 𝑥𝑖
𝑝 𝑥𝑖 𝑥1:𝑖−1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐸𝜑 𝑥1:𝑖−1 𝑖−1

• Finally, apply maximum likelihood

෍

𝑥1:𝐿

෍

𝑖=1

𝐿

− log 𝑝𝜃 𝑥𝑖|𝑥1:𝑖−1

Encoder models

• Bidirectional transformer training objective:

• Masked language modeling: Mask out a particular token, ask the model to
predict the missing token

• Next sentence prediction: BERT is trained on pairs of sentences concatenated.
The goal of next sentence prediction is to predict whether the second sentence
follows from the first or not

• Optimization algorithms: Stochastic gradient

• Take a mini-batch of samples

• Compute the gradient of the objective on the mini-batch, using backpropagation

• Apply one gradient descent step with a learning rate parameter

Adapting a language model

• Language models are trained in a task-agnostic way

• Downstream tasks can be very different from language modeling on the Pile

• Natural language inference (NLI)

• Premise: I have never seen an apple that is not red

• Hypothesis: I have never seen an apple

• Correct output: Not entailment

• Ways downstream tasks can be different

• Topic shift: the downstream task is focused on a new or specific topic

• Temporal shift: the downstream task requires new knowledge that is unavailable
during pre-training

Probing

• Train a probe (or prediction head) from the last layer representations of
the language model to the output (e.g., class label)

Fine-tuning

• Using the entire language model parameters as the initialization or base
model for optimization

• Usually, fine-tuning will produce a model that is fairly close to the base
model

• Low-rank adapters and quantized adapters optimize the number of bits
per performance

Transfer learning

• Transfer learning: use the information learned from one task to help
learn another task

• Example #1: building a face recognition system from open-source models plus a
few hundred labeled examples

• Example #2: fine-tuning a pre-trained language model for solving a downstream
text prediction task

• Multitask learning: simultaneously train a multitask learning model on
multiple objectives

LLM alignment

• Collect human-written demonstrations of desired behavior

• Perform supervised fine-tuning on the demonstrations

• On a set of instructions, sample outputs from the language model for
each instruction, then gather human preferences for which sampled
output is most preferred

• Fine-tune the model with a specialized objective to maximize preference
reward

LLM inference

LLM inference using Llama-1B model. First, install the latest package transformers

Solution: https://colab.research.google.com/drive/1ypGSozzyruZbJ5mmLek3iyX6S8N8wLSE

https://colab.research.google.com/drive/1ypGSozzyruZbJ5mmLek3iyX6S8N8wLSE

LLM inference

Then, you need to sign up a Hugging Face account and create a new token
for logging in

LLM inference

Some models need the permission to access. We need to fill in the request
table and load the model

LLM inference

Use model.generate() to generate following words given the input text

LLM inference

If you want to access the raw output of the model. You can use
model(input_ids).logits

LLM fine-tuning in PyTorch

Finetuning is adapting a pretrained model to a related new task. It doesn’t
change the model’s parameter too much. First, we need to load a model
and use model.train() to put it in train mode

LLM fine-tuning in PyTorch

Then, we need to load an optimizer, such as Adam

The optimizer allows us to apply different hyperparameters for specific
parameter groups. For example, we can apply weight decay to all parameters
other than bias and layer normalization terms:

LLM fine-tuning in PyTorch

Now we can set up a simple dummy training batch

When we call a classification model with the labels argument, the first returned
element is the Cross Entropy loss between the predictions and the passed labels.
Having already set up our optimizer, we can then do a backwards pass and update
the weights:

LLM fine-tuning in PyTorch

Alternatively, you can just get the logits and calculate the loss yourself. Use
Cross Entropy as an example

Colab example: https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU

https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU
https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU
https://colab.research.google.com/drive/1iw34YAFjZcO57j8ivJD3-J837JibhShU

LLM fine-tuning in PyTorch

We can also use a simple but feature-complete training and evaluation interface
through Trainer(). First, we need to change the data into the Dataset version.

LLM fine-tuning in PyTorch

Then we initialize the Trainer and use trainer.train() to fine-tune

Open-source frameworks

• Machine learning frameworks:

• PyTorch

• TensorFlow

• Hugging Face

• Scikit-learn

• R

• Research publications: Arxiv

• Open-source repositories: GitHub

CPU vs. GPU

• CPU: Central Processing Unit / Computer processor

• GPU: Graphics Processing Unit / GPU

• Cloud vs. On-premises vs. Edge

Lecture plan

• Language models

• Training and adaptation with PyTorch implementations

• More about NLP tasks and an example

Examples of NLP tasks

Natural language processing (NLP)

• Sentiment analysis: classifying the emotional intent of text

• Input: a piece of text

• Output: probability that the sentiment expressed is positive, negative, or neutral

Examples of NLP tasks

• Toxicity classification: the aim is not just to classify hostile intent but
also to classify particular categories such as threats, insults, obscenities,
and hatred

• Input: text

• Output: probability of each class of toxicity

• Useful in moderating online conversations by muting offensive
comments, detecting hate speech, etc

Examples of NLP tasks

• Machine translation: automatic translation between different languages

• Input: text in a specified source language

• Output: text in a specified target language

• Google translate is one successful example

Examples of NLP tasks

• Named entity recognition (NER): extract entities in a piece of text
into predefined categories such as personal names, organizations,
locations, and quantities

• Input: text

• Output: various named entities along with their start and end positions

Examples of NLP tasks

• Spam detection: a binary classification problem, where the purpose is to
classify emails as either spam or not
• Input: an email text along with various other subtexts like title and sender’s name

• Output: probability that the mail is spam

• Used by Gmail/Outlook to improve user experience

Examples of NLP tasks

• Grammatical error correction: encode grammatical rules to correct the
grammar within text
• This is a sequence-to-sequence task

• Input: an ungrammatical sentence

• Output: a correct sentence

• Grammarly and spell-checkers in word-processing systems are examples
of such systems

Examples

• Topic modeling: an unsupervised text mining task that takes a corpus
of documents and discovers abstract topics within that corpus
• Input: a collection of documents

• Output: a list of topics that defines words for each topic as well as assignment
proportions of each topic in a document

• Use cases in helping lawyers find evidence in legal documents (link)

https://www.deeplearning.ai/the-batch/order-in-the-court/?_gl=1*7prosj*_gcl_au*MTEyNzE1ODQyMy4xNzU5NzA5Mzc4*_ga*NTI4MTc5MzMyLjE3NTk3MDg4Njk.*_ga_PZF1GBS1R1*czE3NTk3MDg4NjgkbzEkZzEkdDE3NTk3MDkzNzgkajYwJGwwJGgw

Examples

• Text generation / natural language generation (NLG): produces text
that’s similar to human-written text
• Can be fine-tuned to produce text in different genres and formats, including

tweets, blogs, and even computer code

• Autocomplete predicts what word comes next (used in chat apps like WhatsApp)

• Chatbots automate one side of a conversation while a human conversant
generally supplies the other side: database query, conversation generation

Examples

• Information retrieval: finds documents that are most relevant to a
query
• Every search and recommendation system faces this problem

• Often need to retrieve from millions of documents (now enhanced with
multimodal search)

https://www.deeplearning.ai/the-batch/search-goes-multimodal/?_gl=1*1rw58cz*_gcl_au*MTEyNzE1ODQyMy4xNzU5NzA5Mzc4*_ga*NTI4MTc5MzMyLjE3NTk3MDg4Njk.*_ga_PZF1GBS1R1*czE3NTk3MTgzOTIkbzIkZzAkdDE3NTk3MTg1MTgkajYwJGwwJGgw

Examples

• Summarization: shortening text to highlight the most relevant
information
• Extractive summarization: extracts the most important sentences (e.g., by

scoring each sentence) from a long text and combining them to form a summary

• Abstractive summarization: produces a summary by paraphrasing, usually
modeled as a sequence-to-sequence task

Examples

• Question answering: answering questions posed by humans in a natural
language
• Multiple choice: composed of a question and a set of possible answers

• Open domain: provide answers to questions in natural language without any
options provided, often by querying a large number of texts

• IBM Watson: https://www.ibm.com/history/watson-jeopardy

https://www.ibm.com/history/watson-jeopardy
https://www.ibm.com/history/watson-jeopardy
https://www.ibm.com/history/watson-jeopardy

Sentiment analysis with logistic regression

• Sentiment prediction: “A very busy, but rewarding first week of the fall
semester.” The sentence consists of a list of eleven words:
{𝐴1, 𝐴2, … , 𝐴11}

• Input: a list of (text, label) pairs

• Output: a classifier that, given an unseen text, produces the probability
corresponding each label

Naïve Bayes

• Prediction rule: Choose the most likely hypothesis given the list of words

• Hypothesis 𝑦 is Positive, Neural, or Negative

• Use Bayes rule: get likelihood and prior

𝐚𝐫𝐠𝐦𝐚𝐱
𝒚

𝐏𝐫 𝒚 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒚

𝐏𝐫 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏|𝒚 ⋅ 𝐏𝐫 𝒚

𝐏𝐫(𝑨𝟏, … , 𝑨𝒏)

• Naïve Bayes assumes conditional independence: Prior knowledge with a
single word is easier to obtain

𝐏𝐫(𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏|𝒚) = 𝐏𝐫 𝑨𝟏|𝒚 ⋅ 𝐏𝐫 𝑨𝟐 𝒚 ⋅ ⋯ ⋅ 𝐏𝐫 𝑨𝒏 𝒚

Training the naïve Bayes classifier

• Apply logarithm to the above loss

• Now, estimate the condition probability given one hypothesis:

Pr 𝐴𝑖 𝑦 =
𝑐𝑜𝑢𝑛𝑡(“𝐴𝑖”, 𝑦)

𝑐𝑜𝑢𝑛𝑡 𝑤, 𝑦

	Slide 1: Introduction to Artificial Intelligence Lecture 10: Language models III with PyTorch implementation
	Slide 4: Lecture plan
	Slide 5: Training objectives (decoder models)
	Slide 6: Encoder models
	Slide 7: Adapting a language model
	Slide 8: Probing
	Slide 9: Fine-tuning
	Slide 10: Transfer learning
	Slide 11: LLM alignment
	Slide 12: LLM inference
	Slide 13: LLM inference
	Slide 14: LLM inference
	Slide 15: LLM inference
	Slide 16: LLM inference
	Slide 17: LLM fine-tuning in PyTorch
	Slide 18: LLM fine-tuning in PyTorch
	Slide 19: LLM fine-tuning in PyTorch
	Slide 20: LLM fine-tuning in PyTorch
	Slide 21: LLM fine-tuning in PyTorch
	Slide 22: LLM fine-tuning in PyTorch
	Slide 23: Open-source frameworks
	Slide 24: CPU vs. GPU
	Slide 25: Lecture plan
	Slide 26: Examples of NLP tasks
	Slide 27: Examples of NLP tasks
	Slide 28: Examples of NLP tasks
	Slide 29: Examples of NLP tasks
	Slide 30: Examples of NLP tasks
	Slide 31: Examples of NLP tasks
	Slide 32: Examples
	Slide 33: Examples
	Slide 34: Examples
	Slide 35: Examples
	Slide 36: Examples
	Slide 37: Sentiment analysis with logistic regression
	Slide 38: Naïve Bayes
	Slide 39: Training the naïve Bayes classifier

