Introduction to Artificial Intelligence

Lecture 12: Intelligent search

October 16, 2025




Intelligent search
* Applications

* Search algorithms




Application: route finding

* Find optimal route among billions of road segments

* Need to search among a large number of possible routes

* The search space becomes more complex as we go from A to a farther place B

* Robot motion planning

T N

W e
! o \Q
Nyt
navy
\.———_— Y0
> 2 R X o Ave
7 By TN ! Flushw
oo PGS N
GO\ « \ Y
O ooeo \ \




Application: solving puzzles

. Objective: reach a certain conﬁguration

* Example: playing rubik’s cube




Application: playing games

* AlphaGo is a computer program developed by DeepMind to play the

master g0 gamece

* AlphaGo was able to defeat world champion Lee Sedol using
sophisticated tree search combined with neural networks
* The game tree for Go has ~1017? possible positions, which are huge




Other search problems

* Route navigation: Google maps find the optimal route

* Robotics: Path planning for self-driving cars

* Al reasoning: Theorem proving, puzzle solving
* Large language models: Chain of thought fine-tuning and prompting




The search problem

* State: Description of the world at a moment
* Initial State: Where the agent starts in

* Actions: What agent can do in state s
* Transition model: Maps a state and action to a resulting state

* Goal state: Is this the goal?

* Action cost: Numerical cost of applying an action




An example

e Cost = 1 for all transitions




Example problems

* Goal state: Navigate to the Student Center
* Initial state: the Library

* State space: All possible locations on campus

* Actions: Move North, South, East, West

* Transition model: at a current state, make a decision about the next
action to take ————

" o

* Distance, obstacles, and delivery time

e Total cost: Distance traveled or time taken




Search algorithms

Strategy Frontier Type
Breadth-first search First in first out queue
Depth-first search Last in first out stack

Uniform cost search Priority queue




An illustration of breadth-first search

* Start: depth is zero




An illustration of breadth-first search

* Branch out to depth one

Depthd = 0




An illustration of breadth-first search

* Next explore depth two

Depthd =0

Depth d = 2




An illustration of breadth-first search

* Next: depth three

Depthd = 0
Depthd = 3

Depth d = 2




An illustration of breadth-first search

* Finally, reaching the goal
Depth d = 4

Depthd = 0

‘bﬁ
c,gaa

Depthd = 3

Depth d = 2




An illustration of breadth-first search

Depth d=4

Depth d=0

* Guarantees shortest path (by number of steps)
* Memory intensive: must store entire frontier
* When to use: When solution 1s shallow and step costs are uniform




Uniform cost search

* A conceptually simple BEFS approach when actions have different costs

* [t uses a priority queue: pop least-cost state, add successors of that state

PQ = {S0)}




Uniform cost search
* Add three neighbors of the start state in the queue: PQ = {(p,1), (d,3), (¢,9)}




Uniform cost search

* From the minimum cost state, add the next state: PQ = {(d,3), (¢,9), (q,10)}




Uniform cost search
* [llustration of another step: PQ = {(b,4), (e,5), (¢,9), (c, 11), (q,106)}




Uniform cost search
* Iterate for another step: PQ = {(b4), (e,5), (c,11), (q,16)}

* Note that we update ¢’s priority here




Uniform cost search

* Next, PQ = {(e,5), (a,0), (c,11), (q,16)}




Uniform cost search

e Next, PQ = {(h,6), (c,11), (1,14), (q,16)}




Uniform cost search
e Next, PQ = {(q,10), (¢,11), (r,14)}

* Note that we update q’s priority here




Uniform cost search
+ PQ = {(11), (513)}

* Note that we update r’s priority here




Uniform cost search
* PQ = {(r,13)}




Uniform cost search
* PQ = {(£18)}




Uniform cost search

+ PQ = {(G23)}




Uniform cost search
* Final state, PQ = {(G,23)}

2
> 1 2
: (e
1 8

2

5

o O G
oy AT o)

Quiz question: Is “terminate as soon as you discover the goal” the right stopping criterion?




Dijkstra's Algorithm

* Dyjkstra invented the search algorithm in 1956
* Dijkstra: Finds shortest paths from source to all vertices

* Uniform cost search: Dijkstra’s algorithm that stops when reaching the goal

def dijkstra(graph, start):
dist = {v: infinity for v in graph}
dist[start] = 0
pq = PriorityQueue([(@, start)])

while pq:
d, u= pq.pop()
if d > dist[u]: continue # Already found better path

for v, weight in graph[u].neighbors:
if dist[u] + weight < dist[v]:
dist[v] = dist[u] + weight
pg.push((dist[v]l, v))




Uniform cost search

* Advantages
* Complete search with systematic exploration
* Guaranteed optimality
* Works with varying cost functions

e Limitations
* Explores 1n all directions
* No guidance toward goal state

* Can be slow for large spaces




Depth-tirst search

* Explores as far as possible along each branch

* Move to one of the neighbors




Depth-tirst search

* Explores as far as possible along each branch

* Keep moving further: S-> d-> b->a




Depth-tirst search

* Explores as far as possible along each branch

e Backtrack: S-> d-> ¢




Depth-tirst search

* Explores as far as possible along each branch

* Backtrack again: S-> d-> e-> r-> £-> G




Comparing search algorithms

Equal step costs, shallow solution BFES Guarantees shortest path by steps
Memory limited, deep tree DFS Linear space complexity
Varying costs, need optimal UCS/Dijkstra Finds least-cost path

Need all shortest paths Dijkstra Computes complete shortest path tree




