
Introduction to Artificial Intelligence

Lecture 12: Intelligent search

October 16, 2025

Intelligent search

• Applications

• Search algorithms

Application: route finding

• Find optimal route among billions of road segments

• Need to search among a large number of possible routes
• The search space becomes more complex as we go from A to a farther place B

• Robot motion planning

Application: solving puzzles

• Objective: reach a certain configuration

• Example: playing rubik’s cube

Application: playing games

• AlphaGo is a computer program developed by DeepMind to play the
master go game

• AlphaGo was able to defeat world champion Lee Sedol using
sophisticated tree search combined with neural networks
• The game tree for Go has ~10170 possible positions, which are huge

Other search problems

• Route navigation: Google maps find the optimal route

• Robotics: Path planning for self-driving cars

• AI reasoning: Theorem proving, puzzle solving
• Large language models: Chain of thought fine-tuning and prompting

The search problem

• State: Description of the world at a moment

• Initial State: Where the agent starts in

• Actions: What agent can do in state s

• Transition model: Maps a state and action to a resulting state

• Goal state: Is this the goal?

• Action cost: Numerical cost of applying an action

An example

• Cost = 1 for all transitions

START

a
b

d

GOAL

p

q

c

e

h

f

r

Example problems

• Goal state: Navigate to the Student Center

• Initial state: the Library

• State space: All possible locations on campus

• Actions: Move North, South, East, West

• Transition model: at a current state, make a decision about the next
action to take

• Distance, obstacles, and delivery time

• Total cost: Distance traveled or time taken

Search algorithms

Strategy Frontier Type

Breadth-first search First in first out queue

Depth-first search Last in first out stack

Uniform cost search Priority queue

An illustration of breadth-first search

• Start: depth is zero

START

a
b

d

GOAL

p

q

c

e

h

f

r

Depth 𝑑 = 0

An illustration of breadth-first search

• Branch out to depth one

START

a
b

d

GOAL

p

q

c

e

h

f

r

Depth 𝑑 = 0

Depth 𝑑 = 1

An illustration of breadth-first search

• Next explore depth two

START

a
b

d

GOAL

p

q

c

e

h

f

r

Depth 𝑑 = 0

Depth 𝑑 = 1

Depth 𝑑 = 2

An illustration of breadth-first search

• Next: depth three

START

a
b

d

GOAL

p

q

c

e

h

f

r

Depth 𝑑 = 0

Depth 𝑑 = 1

Depth 𝑑 = 2

Depth 𝑑 = 3

An illustration of breadth-first search

• Finally, reaching the goal

START

a
b

d

GOAL

p

q

c

e

h

f

r

Depth 𝑑 = 0

Depth 𝑑 = 1

Depth 𝑑 = 2

Depth 𝑑 = 3

Depth 𝑑 = 4

An illustration of breadth-first search

• Guarantees shortest path (by number of steps)

• Memory intensive: must store entire frontier

• When to use: When solution is shallow and step costs are uniform

START

a
b

d

GOAL

p

q

c

e

h

f

r

Depth d=0

Depth d=1

Depth d=2

Depth d=3

Depth d=4

Uniform cost search

• A conceptually simple BFS approach when actions have different costs

• It uses a priority queue: pop least-cost state, add successors of that state

START

a
b

d

GOAL

p

q

c

e

h

f

r

PQ = {(S,0)}

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Add three neighbors of the start state in the queue: PQ = {(p,1), (d,3), (e,9)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• From the minimum cost state, add the next state: PQ = {(d,3), (e,9), (q,16)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Illustration of another step: PQ = {(b,4), (e,5), (e,9), (c, 11), (q,16)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Iterate for another step: PQ = {(b,4), (e,5), (c,11), (q,16)}

• Note that we update e’s priority here

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Next, PQ = {(e,5), (a,6), (c,11), (q,16)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Next, PQ = {(h,6), (c,11), (r,14), (q,16)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Next, PQ = {(q,10), (c,11), (r,14)}

• Note that we update q’s priority here

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• PQ = {(c,11), (r,13)}

• Note that we update r’s priority here

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• PQ = {(r,13)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• PQ = {(f,18)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• PQ = {(G,23)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Uniform cost search

• Final state, PQ = {(G,23)}

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

Quiz question: Is “terminate as soon as you discover the goal” the right stopping criterion?

9

Dijkstra's Algorithm

• Dijkstra invented the search algorithm in 1956

• Dijkstra: Finds shortest paths from source to all vertices

• Uniform cost search: Dijkstra’s algorithm that stops when reaching the goal

Uniform cost search

• Advantages

• Complete search with systematic exploration

• Guaranteed optimality

• Works with varying cost functions

• Limitations
• Explores in all directions

• No guidance toward goal state

• Can be slow for large spaces

Depth-first search

• Explores as far as possible along each branch

• Move to one of the neighbors

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Depth-first search

• Explores as far as possible along each branch

• Keep moving further: S-> d-> b-> a

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Depth-first search

• Explores as far as possible along each branch

• Backtrack: S-> d-> c

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Depth-first search

• Explores as far as possible along each branch

• Backtrack again: S-> d-> e-> r-> f-> G

START

a
b

d

GOAL

p

q

c

e

h

f

r

2

1

3

9

2

8

2

2
5

51
1 4

15

4

3

9

Comparing search algorithms

Scenario Best Algorithm Why?

Equal step costs, shallow solution BFS Guarantees shortest path by steps

Memory limited, deep tree DFS Linear space complexity

Varying costs, need optimal UCS/Dijkstra Finds least-cost path

Need all shortest paths Dijkstra Computes complete shortest path tree

